Project Icon

continual-learning-baselines

综合持续学习策略基准与评估平台

该项目提供了一套持续学习策略和基线示例,基于Avalanche库实现多种算法,如Less-Forgetful Learning和Elastic Weight Consolidation。项目在Permuted MNIST、Split CIFAR-100等数据集上进行了评估,可重现原始论文结果或自定义参数。这为持续学习研究提供了可靠的基准平台,便于比较不同策略的性能。

UnsupervisedScalableRepresentationLearningTimeSeries - 多变量时间序列的无监督可扩展表示学习方法
GithubPyTorchUCR数据集UEA数据集开源项目无监督学习时间序列表示学习
UnsupervisedScalableRepresentationLearningTimeSeries项目提出了一种无监督可扩展表示学习方法,专门用于处理多变量时间序列数据。该方法基于三元组损失训练编码器,能够处理等长或不等长时间序列。项目提供了UCR和UEA数据集实验代码,包括迁移学习和稀疏标记实验。此外,还包含预训练模型和结果可视化工具。在多个基准数据集上,该方法展现出优秀的性能,为时间序列分析领域提供了创新解决方案。
uncertainty-baselines - 提供高质量的不确定性和鲁棒性标准模板
GithubTPUTensorFlowUncertainty Baselines开源项目数据集模型
Uncertainty Baselines提供高质量的不确定性和鲁棒性标准模板,作为研究人员新想法和应用的起点,促进技术交流。项目高效实施关键任务,减少对代码库其他文件的依赖,便于独立使用。建议不确定性和鲁棒性评估的最佳实践,帮助研究人员快速原型化和基准比较。支持TensorFlow开发,可在TPUs和GPUs上运行,提升实验灵活性和重复性。
BenchMARL - 多智能体强化学习的标准化基准测试平台
BenchMARLGithubTorchRL多智能体强化学习开源项目环境集成算法比较
BenchMARL是一个专注于多智能体强化学习(MARL)的开源训练库,旨在提供标准化接口实现不同算法和环境的可重复性比较。它基于TorchRL后端,支持高效实现和灵活配置,可轻松集成新算法和环境。BenchMARL提供了统一的评估体系,支持marl-eval兼容的数据报告,为MARL研究提供了可靠的基准测试平台。
llm_benchmarks - 大语言模型评估基准集合
GithubLLM人工智能开源项目机器学习自然语言处理语言理解
llm_benchmarks是一个全面的大语言模型评估基准集合,涵盖知识理解、推理能力、多轮对话和内容摘要等方面。该项目包含MMLU、ARC、GLUE等知名数据集,用于测试模型在不同任务中的表现。这一标准化工具为评估大语言模型性能提供了可靠依据,有助于相关技术的发展与应用。
Perpetual ML - 现代数据仓库的高效机器学习解决方案
AI工具加速训练持续学习数据仓库机器学习套件模型监控
Perpetual ML Suite是为现代数据仓库设计的全面机器学习解决方案。这个端到端的低代码/无代码应用提供了显著的性能提升,支持表格分类、回归、时间序列和文本分类等多种ML任务。其特点包括持续学习、模型监控和地理数据优化,无需专用硬件即可实现高效并行计算。该套件旨在加速数据分析过程,提高决策质量,简化机器学习工作流程。
Deep-Learning-Experiments - 深度学习实验和课程指南,涵盖理论与实践
Deep LearningGithubLLMPyTorchSupervised LearningTransformer开源项目
本页面介绍2023版深度学习实验课程,包括理论与实践内容。涵盖监督学习、多层感知器、优化、正则化、卷积神经网络、变压器、自编码器、生成对抗网络和大型语言模型等主题,并提供开发环境、Python、Numpy、PyTorch及Gradio的实践指南。所有文档和代码示例在GitHub上提供,帮助学习者掌握深度学习技术。
EvalAI - 专为机器学习与人工智能算法评估和比较设计的平台
EvalAIGithub人工智能开源平台开源项目机器学习算法比较
EvalAI是一个开源平台,用于评估和比较机器学习及AI算法,提供中心化排行榜和提交界面,支持自定义评估协议和多语言环境,可适应高需求的计算挑战,助力研究者复现研究结果,进行准确可靠的分析。
Transfer-Learning-Library - 高效且易用的迁移学习库,支持多种算法和任务
APIGithubPyTorchTLlibTransfer Learning开源项目机器学习
Transfer Learning Library (TLlib) 是一个开源的迁移学习库,基于PyTorch设计,具备高性能和易用性。该库支持多种方法,如域对齐、域转换和半监督学习,适用于分类、回归、目标检测、分割和关键点检测等任务。提供丰富的示例代码和详细文档,并支持pip安装。这是研发新算法或应用现有算法的理想工具,适用于研究和工程实践。
CALM-pytorch - 组合式增强大型语言模型框架
CALMGithubLLM人工智能开源项目深度学习神经网络
CALM-pytorch是基于Google Deepmind研究的开源PyTorch实现,旨在通过组合多个专业LLM来增强大型语言模型的能力。该框架支持集成任意数量的增强型模型,提供灵活的连接配置和便捷的训练工具。CALM-pytorch可与多种Transformer架构兼容,包括视觉Transformer,为研究人员和开发者提供了一个强大的平台来探索和扩展LLM的潜力。不仅支持文本处理,还能整合视觉和音频模型,为多模态AI应用开发提供了强大支持。
LongBench - 双语长文本理解多任务评估
GithubLongBench多语言大模型开源项目评估长文本理解
LongBench首次为大语言模型的长文本理解能力提供双语、多任务的全面评估基准。它覆盖中文和英文,包含六大类共21种任务,适用于单文档QA、多文档QA、摘要提取、少样本学习、合成任务和代码补全等场景。该项目提供自动化评估方法以降低成本,并涵盖平均长度为5k至15k的测试数据。同时,LongBench-E测试集通过统一采样,分析模型在不同输入长度的性能表现。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号