Project Icon

Llama-3-8B-Ultra-Instruct-SaltSprinkle

文本生成与多任务性能提升的融合模型

项目利用DARE TIES方法融合NousResearch与Dampfinchen模型,提升文本生成和推理性能。在AI2推理和HellaSwag测试中表现突出,准确率分别为61.35%和77.76%。项目增强了模型的推理能力及德语和故事生成的效果。需注意,该模型可能生成有害内容,用户使用时自行承担责任。详细结果可在Open LLM Leaderboard查看。

Llama-3-8B-Lexi-Uncensored - 高性能多任务AI语言模型 无限制对话与灵活应用
GithubHuggingfaceLlama-3人工智能模型开源开源项目文本生成模型自然语言处理
Llama-3-8B-Lexi-Uncensored是一款强大的AI语言模型,在AI2推理挑战、HellaSwag常识理解和GSM8k数学问题等多项任务中表现卓越。该模型在开放式LLM排行榜上平均得分66.18,展现了其在多个领域的应用潜力。虽然模型具有高度灵活性,但使用时需注意实施适当的安全措施。遵循Meta的Llama许可协议,可用于商业及其他多种用途。
Humanish-LLama3-8B-Instruct-GGUF - 介绍模型的量化技术实现文本生成性能突破
GithubHuggingfaceHumanish-LLama3-8B-Instruct基准测试开源项目数据集文本生成模型量化
该项目通过llama.cpp进行量化,优化了模型的嵌入和输出权重,使得文本生成更加高效。模型在多个数据集上表现出色,如IFEval数据集测试中达到严格准确率64.98%。项目提供多种文件格式,支持多样化的计算资源和硬件环境,以满足不同的使用需求,包括低内存和ARM芯片的优化场景。
Llama-3.1-8B-Lexi-Uncensored-V2-GGUF - 提升文本生成技术的精度和合规性
GithubHuggingfaceLlama-3.1-8B-Lexi-Uncensored-V2准确性开源项目未过滤模型量化
基于Llama-3.1-8B-Instruct的项目,旨在提高文本生成的精确性和合规性,并遵循Meta的Llama 3.1社区协议。量化的Lexi模型在多种数据集上评估,IFEval数据集精度达77.92%。用户可自定义系统提示以优化效果,建议在服务部署前添加对齐层以确保合规。使用生成内容时需谨慎负责。
Llama-3SOME-8B-v1-GGUF - 经过小说写作训练优化的轻量级语言模型
GithubHuggingfaceLlama 3SOME人工智能开源项目文本生成模型炼丹语言模型
Llama-3SOME-8B-v1是基于Llama-3-Soliloquy-8B训练的语言模型,主要专注于小说创作。模型支持角色对话、场景叙述等多种写作形式,能保持长文本的连贯性和故事性。提供8bpw、6bpw、4bpw等多种量化版本,满足不同设备的运行需求。
Llama-3.1-8B-Lexi-Uncensored-V2 - 基于Llama-3.1的无审查文本生成模型,支持多任务处理
GithubHuggingfaceLlama-3.1-8B-Lexi-Uncensored-V2人工智能开源开源项目模型自然语言处理语言模型
Llama-3.1-8B-Lexi-Uncensored-V2是一个基于Llama-3.1-8b-Instruct的开源文本生成模型。该模型在IFEval、BBH和MMLU-PRO等多项评测中展现出良好性能,支持文本生成、问答和数学推理等多种任务。模型允许用户通过自定义系统提示来优化输出。由于其无审查特性,建议使用者在应用时注意内容合规性,并在部署服务前考虑实施适当的对齐措施。
NeuralSynthesis-7B-v0.1 - NeuralSynthesis-7B-v0.1在多个基准数据集上展示出卓越的文本生成性能
GithubHuggingfaceLeaderboardNeuralSynthesis-7B-v0.1开源项目文本生成模型模型合并语言模型
NeuralSynthesis-7B-v0.1展示了强大的文本生成能力,结合多种模型优势并通过LazyMergekit合并。在AI2 Reasoning Challenge、HellaSwag、MMLU等任务中取得优异成绩,其在AI2 Reasoning Challenge上的标准化准确率为73.04%、HellaSwag验证集上为89.18%,在TruthfulQA 0-shot任务中达到78.15%的精确度。详细性能及排名可在Open LLM Leaderboard查看。
Llama-3.1-8B-ArliAI-RPMax-v1.2-GGUF-IQ-ARM-Imatrix - 基于Llama的创意写作与角色扮演优化模型
GGUFGithubHuggingfaceLlama 3.1roleplaying人工智能模型开源项目模型角色扮演
基于Llama-3.1-8B开发的模型,采用GGUF-IQ-ARM-Imatrix量化技术,通过去重数据集训练,实现角色和情境的多样化表现。模型支持Llama 3 Instruct提示格式,可用于创意写作和角色扮演对话场景
Llama-3.2-1B-Instruct-GGUF - 多语言模型优化,提升对话和信息处理效率
GithubHuggingfaceLlama 3.2优化多语言对话开源项目模型生成模型行业基准
这个项目提供了经过优化的多语言大语言模型,提升了对话应用的效果和效率。Llama 3.2系列在1B和3B规格中进行了预训练及指令优化,能够处理信息提取和文本总结等多种任务。该模型在常用的行业基准测试中表现优于许多其他开源和闭源模型。SanctumAI通过量化增加了模型的操作效率,并提供多种量化选项以适应不同的硬件需求。在多语言对话的使用案例中,这些优化后的模型确保了良好的性能表现。
Llama-3.1-Storm-8B - 多任务智能的高性能开源语言模型
GithubHuggingfaceLlama-3.1-Storm-8B人工智能大语言模型开源项目机器学习模型模型微调
Llama-3.1-Storm-8B是基于Llama-3.1-8B-Instruct改进的开源语言模型。通过自主数据筛选、定向微调和模型合并,它在10个基准测试中显著超越原始模型,包括指令遵循、知识问答、推理能力、真实性和函数调用。GPQA提升7.21%,TruthfulQA提升9%,函数调用准确率提升7.92%。支持Transformers、vLLM和Ollama等多种部署方式,为AI开发者提供高性能的通用型语言模型选择。
llama_3.1_q4 - 高效文本生成模型,结合优化技术提升性能
GithubHuggingfaceUnslothtransformers开源项目文本生成模型模型训练
llama_3.1_q4模型结合Unsloth与Huggingface TRL库,实现快速训练,保持8B参数模型的强大性能,优化文本生成能力。项目在Apache-2.0许可下开放使用,适用于多语言生成,由keetrap负责开发。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号