Project Icon

botpress_Vaganet_new_model

高效的少样本学习技术提升多语言文本分类精度

SetFit模型结合sentence-transformers的微调与LogisticRegression,实现88.97%的文本分类准确率,支持在多语言环境下进行34类文本分类,具备少样本学习能力,是资源有限条件下的高效选择。

voice-safety-classifier - 语音聊天毒性检测的高精度分类工具
GithubHuggingfacetoxicity detection多标签分类开源项目模型模型评估语音安全音频分类
该项目提供了一个新的语音聊天毒性检测基准模型,基于大规模数据集开发。模型使用WavLM base plus权重,经过2,374小时语音多标签微调,输出标签包括Profanity、DatingAndSexting、Racist、Bullying等。评估显示模型在二元分类任务中的精度达到94.48%。使用者可通过特定命令运行模型权重进行应用。
mmlw-roberta-large - 增强自然语言处理适用性的多任务学习模型
GithubHuggingfacesentence-transformers句子相似度开源项目文本分类模型特征提取聚类
该开源项目mmlw-roberta-large通过多任务学习提高了自然语言处理性能,尤其在句子相似性、分类和检索等任务上表现突出。模型适用于多种数据集,如MTEB AllegroReviews和MTEB ArguAna-PL,实现了较高的准确率和F1值。使用了sentence-transformers和transformers技术,确保在大规模数据集上的优异表现。
emotion_text_classifier - DistilRoBERTa微调的多类情感分析模型
DistilRoBERTaGithubHuggingface开源项目情感分类机器学习模型深度学习自然语言处理
这是一个基于DistilRoBERTa微调的情感分类模型,能够识别文本中的七种情绪,包括六种基本情绪和一种中性情绪。模型在《老友记》剧本数据集上进行了微调,特别适合分析电视剧和电影的对话文本。支持的情绪标签包括愤怒、厌恶、恐惧、快乐、中性、悲伤和惊讶,为自然语言处理中的情感分析任务提供了实用工具。
fineweb-edu-fasttext-classifier - 高效快速的FastText分类器用于网页教育价值评估
FastTextGithubHuggingFaceFWHuggingface分类器开源项目教育价值模型模型评估
该项目引入了一种基于FastText的分类器,旨在评估网页的教育价值。通过使用fineweb-edu-llama3-annotations数据集进行训练,该模型支持高速数据处理,在CPU上每秒可分类超过2000个样本。该分类器与基于transformer的模型进行了性能比较,尤其在标签0、1、2上的表现相近,但在较高标签上性能稍有下降。适合用于需要快速判断网页教育内容的场景,是处理大数据的有效工具。
Text-Moderation - 基于Deberta-v3的多分类文本审核系统
AutotrainDeBERTaGithubHuggingface内容分类开源项目文本审核模型自然语言处理
Text-Moderation采用Deberta-v3架构开发的文本分类模型,通过九类标签对文本内容进行审核分类。模型可识别包括性内容、仇恨言论、暴力描述、骚扰行为和自残倾向等敏感信息,并为每个类别提供概率评分。该模型实现了75%的分类准确率,主要支持英语文本的审核工作,可应用于内容审核和文本管理场景。
bert-base-uncased-emotion - 情感数据集的高效文本分类模型
F1分数GithubHuggingfacebert-base-uncased-emotion准确率开源项目情感分析文本分类模型
bert-base-uncased模型针对情感数据集的微调结果显示,其在准确率和F1分数分别达到94.05%和94.06%。借助PyTorch和HuggingFace平台,该模型实现高效的情感文本分类,适用于社交媒体内容分析,特别是在Twitter环境中,为数据科学家和开发人员提供情感解析的精确工具。
deberta-v3-base-zeroshot-v1.1-all-33 - DeBERTa-v3通用零样本分类模型支持387种文本分类场景
DeBERTa-v3GithubHuggingface开源项目文本分类机器学习模型自然语言推理零样本分类
DeBERTa-v3基础模型通过自然语言推理技术实现通用文本分类。经过387个分类任务训练后,可直接应用于情感分析、主题识别、内容审核等场景,平均准确率84%。采用pipeline接口,无需针对新任务重新训练即可使用。
GPT-JT-6B-v1 - 优化文本分类的先进语言模型
GPT-JTGithubHuggingfaceUL2分类任务开放数据集开源项目文本生成模型
GPT-JT-6B-v1采用去中心化训练和开放数据集,提升文本分类表现。结合UL2训练目标等先进技术,使其在计算效率上具有优势,优于大多数百亿参数模型。在多样化数据集如自然指令和P3上,GPT-JT利用标记和双向上下文学习,增强推断能力和语言处理功能。
fasttext-en-vectors - 多语言词向量学习和文本分类开源库
GithubHuggingfacefastText开源项目文本分类机器学习模型自然语言处理词向量
fastText是一个开源轻量级库,专注于词向量学习和文本分类。它支持157种语言,可在普通硬件上快速训练,并提供预训练模型。fastText适用于文本分类、语言识别等任务,从实验到生产均可使用。该库简单易用,能在短时间内处理海量文本,是自然语言处理领域的高效工具。
bert-classification-tutorial - BERT与Transformers库实现的新闻文本分类项目
BERTGithub开源项目文本分类深度学习自然语言处理预训练语言模型
这是一个基于BERT模型的现代化文本分类实现项目。项目采用最新的Python、PyTorch和Transformers库,为自然语言处理任务提供了高质量模板。完整流程涵盖数据准备、模型训练和评估,并具有清晰的代码结构和详细说明。虽然主要针对livedoor新闻语料库的分类任务,但也易于适应其他文本分类需求。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号