Project Icon

universal_ner_ita

意大利语命名实体识别,使用零样本学习适用于多领域

该模型适用于意大利语命名实体识别,通过零样本学习实现对多种实体的识别,无需特定训练。可联系Michele Montebovi进行定制以提升性能。模型支持CPU运行并可通过浏览器直接体验。

LLaMAntino-2-7b-hf-ITA - 意大利语自然语言生成的大型语言模型
GithubHuggingfaceLLaMAntino-2-7bQLora开源项目意大利语模型自然语言生成超级计算机
LLaMAntino-2-7b 是一款专门适配意大利语的 LLaMA 2 大型语言模型,旨在支持自然语言生成任务。该模型采用 QLora 方法在 clean_mc4_it 中等数据集上进行训练,为意大利 NLP 研究提供基础。由 Pierpaolo Basile 等人开发,并获得 PNRR 项目 FAIR 的支持,在 Leonardo 超级计算机上运行。代码尚未发布,更多信息可通过 GitHub 获取。此模型以 Llama 2 社区许可证开放,适合应用于意大利语的自然语言处理任务。
bert-base-italian-xxl-cased - 基于大规模语料库的意大利语BERT预训练模型
BERTELECTRAGithubHugging FaceHuggingface开源项目意大利语模型模型自然语言处理
bert-base-italian-xxl-cased是巴伐利亚州立图书馆MDZ数字图书馆团队开发的意大利语BERT模型。该模型基于81GB语料库训练,包含131亿个标记,适用于命名实体识别、词性标注等多种意大利语自然语言处理任务。研究人员可通过Hugging Face Transformers库轻松使用此模型进行相关研究。
cerbero-7b - 意大利AI革命的开创性语言模型
AI解决方案GithubHuggingfacecerbero-7b开源开源项目意大利模型语言模型
cerbero-7b是首个完全免费且开源的意大利大型语言模型,其性能可与ChatGPT 3.5媲美,适合用于研究及商业应用。基于mistral-7b, cerbero-7b在意大利AI领域填补了空白,并推进了多行业的创新及技术与大众的结合。模型采用Apache 2.0许可,支持不受限制的使用,适合意大利语言AI应用的多种需求。
gliner_multi - 灵活识别多语言实体的开源NER模型
GLiNERGithubHuggingface命名实体识别多语言模型开源项目机器学习模型自然语言处理
GLiNER-multi是一个基于双向Transformer架构的开源多语言命名实体识别模型。它能够灵活识别各种实体类型,填补了传统NER模型与大型语言模型之间的空白。该模型在Pile-NER数据集上训练,支持多语言处理,易于集成到不同的自然语言处理应用中。GLiNER-multi在保证性能的同时优化了模型规模,适用于计算资源有限的场景。
xlm-roberta-base-ner-silvanus - 基于XLM-RoBERTa的多语言命名实体识别模型
GithubHuggingfaceNERXLM-RoBERTa命名实体识别多语言模型开源项目模型零样本迁移学习
该模型基于xlm-roberta-base在印尼NER数据集上微调而来,可从社交媒体文本中提取位置、日期和时间信息。虽然训练数据为印尼语,但通过零样本迁移学习,模型支持英语、西班牙语、意大利语和斯洛伐克语的信息提取。在验证集上,模型展现出91.89%的精确率、92.73%的召回率和92.31%的F1分数,显示了其在多语言命名实体识别任务中的有效性。
GLiNER - 通用轻量级命名实体识别模型
BERTGLiNERGithub命名实体识别开源项目机器学习自然语言处理
GLiNER是一个通用轻量级的命名实体识别模型,采用双向转换器编码器架构。它能识别任意类型的实体,填补了传统NER模型和大型语言模型之间的空白。GLiNER具有灵活性高、体积小、效率高的特点,适用于资源受限的场景。该模型支持自定义实体类型,可应用于信息提取、文本分类等多种自然语言处理任务。
gliner_medium-v2.1 - 多功能通用型命名实体识别模型GLiNER
GLiNERGithubHuggingface人工智能命名实体识别开源项目机器学习模型自然语言处理
GLiNER是一种基于双向Transformer编码器的命名实体识别模型,可识别任意类型的实体。该模型为资源受限场景提供了实用的替代方案,克服了传统NER模型仅限预定义实体的局限性,同时避免了大型语言模型的高成本问题。GLiNER支持多语言,提供不同规模的版本,安装使用简便。在NER基准测试中表现优异,适用于多种应用场景。
bert-base-italian-xxl-uncased - 意大利BERT和ELECTRA模型的开源大规模数据集
BERTELECTRAGithubHuggingface巴伐利亚州立图书馆开源项目意大利语模型模型
项目由巴伐利亚州立图书馆的MDZ数字图书馆团队开源,专注于训练大规模意大利语BERT和ELECTRA模型。数据来自Wikipedia和OPUS语料库,扩展至OSCAR语料库,数据规模从13GB到81GB不等,兼容PyTorch-Transformers。提供NER和PoS标注任务的结果示例,模型可在Huggingface model hub下载。欢迎通过GitHub参与和反馈。
gliner_large-v1 - 资源友好的多实体识别模型,为多种应用场合提供灵活解决方案
GLiNERGithubHuggingfacePile-NER数据集双向变压器编码器命名实体识别开源项目模型模型训练
GLiNER是通过双向转换器编码器实现的命名实体识别模型,可识别多种实体类型。它是传统NER模型和大型语言模型这两者的高效替代,特别适合资源有限的场合。GLiNER在Pile-NER数据集上经过训练,具备灵活性且不受实体类型限制。用户可通过安装并导入GLiNER库轻松进行实体识别。
SeewebLLM-it - 意大利语高效微调语言模型
GithubHuggingfaceLlama2Seeweb人工智能开源项目微调意大利语模型
SeewebLLM-it是一款针对意大利语优化的语言模型,基于LLama-2-7b-chat-hf精细微调,在Seeweb Cloud GPU的支持下经过训练,涵盖了约300个意大利语对话实例。虽然目前的输出在准确性上还需进一步提升,但随着训练数据集的扩展,该模型未来可在更多领域展现潜力。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号