Project Icon

Transformers-for-NLP-and-Computer-Vision-3rd-Edition

深入探索Transformers在NLP和计算机视觉中的应用

该书全面介绍Transformers在NLP和计算机视觉领域的应用,探讨大型语言模型架构、预训练和微调技术,以及Hugging Face、OpenAI和Google Vertex AI平台的使用。内容涵盖跨平台链式模型实现、视觉transformers处理,并探索CLIP、DALL-E 3和GPT-4V等前沿技术。此外还讨论模型解释性、tokenizer优化和LLM风险缓解等关键主题,为读者提供Transformers应用的实践指南。

Deep-Learning-Experiments - 深度学习实验和课程指南,涵盖理论与实践
Deep LearningGithubLLMPyTorchSupervised LearningTransformer开源项目
本页面介绍2023版深度学习实验课程,包括理论与实践内容。涵盖监督学习、多层感知器、优化、正则化、卷积神经网络、变压器、自编码器、生成对抗网络和大型语言模型等主题,并提供开发环境、Python、Numpy、PyTorch及Gradio的实践指南。所有文档和代码示例在GitHub上提供,帮助学习者掌握深度学习技术。
awesome-huggingface - 综合NLP开源项目与Hugging Face集成工具
GithubHugging FaceNLP工具包transformers开源项目机器学习自然语言处理
该项目列出了多个优秀的开源项目和应用,均与Hugging Face库集成,为各类NLP任务提供有效的解决方案。内容涵盖官方库教程、NLP工具包、文本表示、推理引擎、模型扩展、模型压缩、对抗攻击、风格转换、情感分析、语法纠正、翻译、知识与实体、语音处理、多模态学习、强化学习、问答系统、推荐系统、评估工具、神经搜索、云支持和硬件支持等多个领域。此项目能够帮助用户找到并使用适合的工具和库,提升自然语言处理任务的效率和效果。
machine-learning-book - 深入使用PyTorch和Scikit-Learn的机器学习指南
GithubMachine LearningPackt PublishingPyTorchScikit-LearnSebastian Raschka开源项目
该书介绍了如何使用PyTorch和Scikit-Learn进行机器学习,内容包含从数据预处理到高级深度学习模型的实现。主要涵盖分类、回归、聚类、神经网络、自然语言处理、生成对抗网络及强化学习等主题,通过实用的代码示例和实际应用帮助读者掌握机器学习技术。无论是初学者还是有经验的开发者,都可以将其作为理解和应用机器学习的重要参考资料。
Awesome-Transformer-Attention - 视觉变换器与注意力机制的最新研究进展
GithubTransformerVision Transformer多模态学习开源项目注意力机制深度学习
探索视觉变换器和注意力机制的最新发展,包括由Min-Hung Chen持续更新的论文、代码与链接资源。适合学术与实际应用,发现创新思路。
awesome-DeepLearning - 提供深度学习课程、书籍、案例和面试指南
AI StudioGithubTransformer开源项目深度学习零基础实践深度学习飞桨
飞桨官方出品,提供一站式深度学习学习资源,包括基础实践课程、深度学习书籍、百问专题和产业应用案例等。涵盖从基础到进阶的学习资料,适合高校和企业应用。项目内容实时更新,帮助开发者掌握最新深度学习技术,提升专业能力。
v3_1_pt_ep1_sft_5_based_on_llama3_1_8b_final_data_20241019 - 探索先进的自然语言处理开源模型及其实际应用
GithubHuggingfacetransformers开源项目模型模型卡环境影响训练细节语言模型
了解先进自然语言处理开源模型的信息,包括用途、评估方法及风险提示。虽然详细信息未完全披露,但以上内容可为开发和应用提供重要参考。
swift-coreml-transformers - 实现GPT-2和BERT等Transformer模型
CoreMLGithubSwiftTransformers开源项目模型转换自然语言处理
swift-coreml-transformers项目提供了GPT-2、DistilGPT-2、BERT和DistilBERT等Transformer模型的Swift Core ML实现。项目包括预训练模型、转换脚本、分词器实现和演示应用。开发者可在iOS设备上部署这些自然语言处理模型,实现文本生成和问答功能。该开源项目展示了如何将先进NLP技术应用于移动设备。
time-series-transformers-review - 时序数据建模中的Transformers技术综述
GithubTransformers分类开源项目异常检测时间序列预测
本项目专业整理了Transformers在时序数据建模中的资源,涵盖论文、代码和数据,全面总结其最新进展。内容持续更新,开放问题提交和拉取请求,覆盖时序预测、不规则时序建模、异常检测和分类等领域,适合学术研究及实际应用。
nlp - NLP基础知识与应用案例介绍
GithubNLPfasttext开源书籍开源项目机器学习自然语言处理
介绍自然语言处理(NLP)的基础知识和实际应用,包括常用数据集、机器学习模型评价方法、词袋模型、TFIDF、Word2Vec、Doc2Vec等技术,以及多层感知机、fasttext和LDA在文档分类和主题建模中的应用。还展示了对美食评语的情感分析,说明了NLP在文本理解与安全领域的重要性。此外,还介绍了一本开源NLP入门书籍的写作和更新过程,适合想深入了解NLP技术的读者。
LLMs-from-scratch - 简明易懂的GPT类大语言模型构建与训练教程
Build a Large Language ModelGPTGithubLLM开源项目微调预训练
本书详细介绍了如何从零开始编码、构建和训练GPT类大语言模型。提供逐步指导、清晰图示和示例,适合教育用途的小型模型开发,并包含大模型预训练权重加载和微调的代码示例。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号