Project Icon

frugally-deep

在C++中运行Keras模型,无需依赖TensorFlow的小型的头文件库

frugally-deep是一个小型的头文件库,允许在C++中运行Keras模型进行预测而无需依赖TensorFlow。它依赖于FunctionalPlus、Eigen和json头文件库,支持复杂的模型拓扑,并显著减小二进制大小。项目特点包括支持多种层类型、节省RAM以及通过并行处理提高预测性能。frugally-deep在单核CPU上表现相对较快,适合内存敏感和需要快速部署的应用。

gemma.cpp - 轻量级C++推理引擎 实现Google Gemma模型
C++Gemma模型Githubgemma.cpp开源项目推理引擎机器学习
gemma.cpp是一个轻量级C++推理引擎,为Google Gemma基础模型提供2B和7B版本的简洁实现。项目专注于简单直接而非通用性,适合实验和研究用途。它易于嵌入其他项目并支持修改,利用Google Highway库实现可移植SIMD优化,为大语言模型研究提供灵活平台。
caffe2 - 轻量级、模块化和可扩展的深度学习框架
Caffe2GithubPyTorch开源项目模块化深度学习框架高性能
Caffe2是一个以表达力、速度和模块化为设计理念的轻量级、模块化和可扩展的深度学习框架。欲了解更多信息,请访问caffe2.ai。
sparseml - 神经网络优化工具,简化代码实现高效稀疏模型
GithubSparseML开源项目推理优化模型优化神经网络稀疏化
SparseML是开源模型压缩工具包,使用剪枝、量化和蒸馏算法优化推理稀疏模型。可导出到ONNX,并与DeepSparse结合,在CPU上实现GPU级性能。适用于稀疏迁移学习和从零开始的稀疏化,兼容主流NLP和CV模型,如BERT、YOLOv5和ResNet-50,实现推理速度和模型大小的显著优化。
DeepCTR - 简易模块化深度学习CTR模型库
CTR模型DeepCTRGithubTensorFlow开源项目推荐系统深度学习
DeepCTR是一个简易、模块化、可扩展的深度学习CTR模型库,提供tf.keras.Model和TensorFlow Estimator接口,适用于快速实验和大规模数据分布式训练。兼容TensorFlow 1.x和2.x,支持多种复杂模型的构建和预测。
tiny-dream - 轻量级 Stable Diffusion C++ 推理库
C++GithubStable DiffusionTiny Dream图像生成嵌入式开源项目
Tiny Dream 是一个轻量级的 Stable Diffusion C++ 实现,仅包含头文件且无外部依赖。该库专注于提高 CPU 效率和减少内存占用,在普通硬件上即可高效运行。Tiny Dream 内存需求低,支持多种高级功能,并提供简洁的 C++ API,便于集成到现有项目中。
tensorflow-deep-learning - TensorFlow深度学习教程
GithubTensorFlow开源项目深度学习神经网络训练课程
本项目通过展示如何使用TensorFlow和Keras解决多种问题,教授深度学习的基本技能及其应用。课程内容包括关键视频教程、实践练习和项目实战,确保学习者能通过动手操作全面理解深度学习。适合任何级别的学者,帮助你提升个人和职业技能。
InferLLM - 轻量化语言模型推理框架,兼容多种模型格式和设备
GithubInferLLMllama.cpp多模型兼容开源项目模型推理高效率
InferLLM 是一个高效简洁的语言模型推理框架,源于 llama.cpp 项目。主要特点包括结构简单、高性能、易于上手,并支持多模型格式。目前兼容 CPU 和 GPU,可优化 Arm、x86、CUDA 和 riscv-vector,并支持移动设备部署。InferLLM 引入了专有 KVstorage 类型以简化缓存和管理,适合多种应用场景。最新支持的模型包括 LLama-2-7B、ChatGLM、Alpaca 等。
llm.c - 纯C和CUDA实现的高效轻量级语言模型训练框架
CUDAC语言GPU训练GithubLLM开源项目
llm.c是一个使用纯C和CUDA实现的高效轻量级语言模型训练框架。该项目不依赖PyTorch或cPython等大型框架,通过简洁代码实现GPT-2和GPT-3系列模型的预训练。llm.c支持单GPU、多GPU和多节点训练,提供详细教程和实验示例。项目在保持代码可读性的同时追求高性能,适用于教育和实际应用。此外,llm.c支持多种硬件平台,并有多个编程语言的移植版本。
ncnn - 移动端神经网络推理框架
Githubncnn开源项目深度学习神经网络移动平台腾讯
ncnn 是一个专为移动端设计,无第三方依赖的开源神经网络推理框架。它支持跨平台功能,低内存占用及在手机CPU上的高速运算能力。利用 ncnn,开发者能够迅速在移动应用中部署深度学习模型,加入智能化功能。该框架已在众多应用程序中使用,如QQ和微信。同时,ncnn 支持 Vulkan API,优化了GPU加速功能,致使在移动设备上表现卓越。
ggml - C语言开发的机器学习张量库 支持多种AI模型推理
GPU加速Githubggml开源项目推理机器学习量化
ggml是一个C语言编写的机器学习张量库,支持16位浮点和整数量化。该库提供自动微分、优化器和多架构优化,无第三方依赖。ggml可用于GPT、LLaMA、Whisper等多种AI模型的推理。它在CPU上表现高效,同时支持GPU加速,适用于多种设备和平台。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号