Project Icon

concept-erasure

LEACE算法实现特征精准移除 优化模型公平性与可解释性

LEACE (LEAst-squares Concept Erasure) 是一种创新的概念擦除算法,通过闭式解方法有效阻止线性分类器检测特定概念,同时最小化对数据表征的影响。该方法可应用于增强模型公平性和可解释性,例如消除性别或种族等敏感特征的影响。项目提供简单易用的Python包,支持批量和流式数据处理,适合处理大规模数据集。LEACE在保证效率的同时,为AI模型的偏见消除和特征解释提供了有力支持。

reversal_curse - 大语言模型的逆向学习局限性研究
GithubLLMReversal Curse人工智能开源项目机器学习自然语言处理
该研究项目探讨了大语言模型在逆向学习任务中的表现局限。研究通过三个实验发现,模型学习A=B关系时难以自动掌握B=A关系。实验涵盖身份信息逆转、实际应用中的逆转问题和指令逆转。项目开源了数据生成、模型微调和评估代码,有助于深入理解语言模型的学习局限。
aimet - 深度学习模型优化的量化与压缩工具
AIMETGithubPyTorch开源项目模型压缩模型量化深度学习
AI Model Efficiency Toolkit (AIMET) 提供先进的模型量化和压缩技术,专注于优化已训练的神经网络模型。其主要功能包括跨层均衡、偏差校正、自适应舍入和量化感知训练,显著提升模型运行性能,降低计算和内存要求,并保持任务精度。AIMET 兼容 PyTorch、TensorFlow 和 ONNX 模型,通过 AIMET Model Zoo 提供优化的8位推理神经网络模型。同时,AIMET 支持空间SVD和通道剪枝等压缩技术,并提供可视化工具检查模型量化和压缩效果。
self-paced-ensemble - 自适应集成学习框架解决高度不平衡数据分类
GithubPython库Self-paced Ensemble不平衡数据分类开源项目机器学习集成学习
Self-paced Ensemble (SPE)是一个处理大规模高度不平衡数据分类的集成学习框架。SPE采用严格平衡的欠采样策略,无需计算样本间距离,适用于各类数据集。该框架计算高效,性能优异,可与多种学习模型兼容。作为通用框架,SPE能提升现有方法在不平衡数据上的表现,特别适合处理噪声大、极度不平衡的大规模数据集。
sparseml - 神经网络优化工具,简化代码实现高效稀疏模型
GithubSparseML开源项目推理优化模型优化神经网络稀疏化
SparseML是开源模型压缩工具包,使用剪枝、量化和蒸馏算法优化推理稀疏模型。可导出到ONNX,并与DeepSparse结合,在CPU上实现GPU级性能。适用于稀疏迁移学习和从零开始的稀疏化,兼容主流NLP和CV模型,如BERT、YOLOv5和ResNet-50,实现推理速度和模型大小的显著优化。
awesome-llm-interpretability - 深入理解大语言模型内部机制与可解释性
GithubLLM人工智能可解释性开源项目机器学习神经网络
该项目汇集了大语言模型(LLM)可解释性领域的核心资源,包括解释性工具、学术论文、行业报告和深度分析文章。内容涵盖神经元分析、注意力机制、模型行为等多个维度,旨在帮助研究人员和开发者深入理解LLM内部原理,提升模型透明度。项目为LLM可解释性研究提供了全面的知识库和工具集。
robust_llm_pythia-14m-pm-gen-ian-nd - 深入了解transformers模型的应用与限制
GithubHuggingfacetransformers开源项目模型模型卡环境影响训练细节评估
模型基于transformers库开发,旨在揭示模型在操作中可能存在的偏见、风险及技术限制,帮助用户明确其应用场景及注意要点。
ACE - 革命性AI技术套件 为数字人物赋予生命
GithubNVIDIA ACE开源项目微服务数字人生成式AI语音识别
NVIDIA ACE是一套用于创建数字人物的AI技术集。它集成了语音识别、文本翻译和语音合成等先进模型和微服务。ACE支持云端和本地灵活部署,适用于游戏NPC和客服助手等场景。该技术注重安全性和一致性,并提供详细文档,助力开发者构建新一代数字人物应用。
wefe - 词嵌入公平性评估框架
GithubWEFE偏见评估公平性开源库开源项目词嵌入
WEFE是一个词嵌入公平性评估框架,用于测量和缓解词嵌入模型中的偏见。它统一了现有的公平性指标,提供标准接口来封装指标、测试集和计算模型公平性。WEFE还将偏见缓解过程标准化为计算和执行两个阶段。框架支持多种安装方式,提供详细文档。WEFE致力于推动词嵌入技术的公平性发展。
cnn-explainer - 互动可视化工具,帮助用户理解卷积神经网络
CNN ExplainerGeorgia TechGithub交互式可视化卷积神经网络开源项目机器学习教育
CNN Explainer 是一个用于学习卷积神经网络的互动可视化工具,提供实时演示和本地运行功能。用户可以克隆代码库并在本地环境中运行,支持自定义模型和图像类别。该工具由乔治亚理工学院与俄勒冈州立大学合作开发。
Streamline-Analyst - AI数据分析工具,自动化处理全流程数据
GithubStreamline Analyst开源项目数据分析数据可视化模型选择自动化工作流程
Streamline Analyst 是一个基于大型语言模型的开源数据分析应用,旨在提高数据分析效率。它自动执行数据清洗、预处理和其他复杂任务,如识别目标对象、划分测试集以及选择最佳模型。用户只需进行简单的操作,即可快速得到高质量的视觉化结果和模型。此工具确保数据隐私和安全,同时未来将增加自然语言处理、神经网络和对象检测等更多高级功能。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号