Project Icon

mlp

多层感知器实现n-gram语言模型的开源项目

该项目基于Bengio等人2003年的论文,实现了多层感知器(MLP)作为n-gram语言模型。项目提供C、NumPy和PyTorch三种实现,展示了从底层操作到高级抽象的不同层次。通过对比,突出了PyTorch在Tensor处理、自动微分和深度学习层构建方面的优势。相比传统n-gram模型,此方法以较少参数实现更低验证损失,但训练成本较高。

pytorch-openai-transformer-lm - 基于PyTorch的OpenAI Transformer语言模型实现
GithubOpenAIPyTorchTransformer Language Model开源项目模型预训练
该项目实现了OpenAI Transformer语言模型在PyTorch中的复现,提供了预训练权重加载脚本及模型类。采用固定权重衰减和调度学习率优化模型,支持对ROCStories Cloze任务进行微调,效果接近原始TensorFlow实现。适用于深度学习研究和语言模型的生成与分类任务。
HanLP - 面向多语种的生产环境自然语言处理工具,支持PyTorch与TensorFlow
GithubHanLPPyTorchTensorFlow多语种开源项目自然语言处理
HanLP是一款面向生产环境的多语种自然语言处理工具,基于PyTorch和TensorFlow双引擎。支持130种语言和多种NLP任务,包括分词、词性标注、命名实体识别和依存句法分析等。HanLP的预训练模型持续更新,并提供RESTful API和native API,适用于敏捷开发和移动应用。
nlp-recipes - 使用最新深度学习模型加速自然语言处理系统开发
Azure Machine LearningBERTGithubNLPtransformers开源项目深度学习
该资源库提供构建NLP系统的示例和最佳实践,重点关注最新的深度学习方法和常见场景,如文本分类、命名实体识别和文本摘要。支持多语言,特别是利用预训练模型应对不同语言任务。内容基于与客户的合作经验,旨在简化开发过程,帮助数据科学家和工程师快速部署AI解决方案。
joeynmt - 简洁而清晰的NMT模型实现,促进教育和学习
GRUGithubJoey NMTPyTorchTransformer开源项目机器翻译
Joey NMT框架专为教育而设计,提供简明和清晰的代码库,帮助初学者理解RNN和Transformer等经典NMT架构。其主要特点包括模块化设计,便于修改组件及训练流程,保持代码可读性。支持多个注意力机制、不同的分词类型和多语种翻译,包含详细的文档和教程,适用于模型训练、测试和翻译的各个阶段。最新版本引入分布式数据并行和多项优化,兼容最新的Python和PyTorch版本。
m2 - 子二次GEMM架构Monarch Mixer实现高效语言模型
GithubM2-BERTMonarch Mixer人工智能开源项目机器学习自然语言处理
Monarch Mixer是一种创新的子二次GEMM架构,用于训练序列长度和模型维度均为子二次的语言模型。该架构使用Monarch矩阵层替代Transformer中的注意力和MLP操作,提高了计算效率。基于此架构的M2-BERT模型在减少25%参数和计算量的同时,在GLUE基准测试中达到了与BERT相当的性能。项目开源了预训练模型权重以及预训练和微调代码,方便研究者进行further研究。
transformer-models - MATLAB深度学习变换器模型实现库
BERTGithubMATLABTransformer开源项目深度学习自然语言处理
该项目提供MATLAB环境下的多种深度学习变换器模型实现,包括BERT、FinBERT和GPT-2。支持文本分类、情感分析、掩码标记预测和文本摘要等自然语言处理任务。项目特点包括预训练模型加载、模型微调、详细示例和灵活API,可用于研究和实际应用。
Pytorch-NLU - 轻量级NLP工具包 支持文本分类和序列标注
GithubPytorch-NLU序列标注开源项目文本分类自然语言处理预训练模型
Pytorch-NLU是一个轻量级自然语言处理工具包,专注于文本分类、序列标注和文本摘要任务。该工具包支持BERT、ERNIE等多种预训练模型,提供多种损失函数,具有依赖少、代码简洁、注释详细、配置灵活等特点。Pytorch-NLU包含丰富的数据集,使用方式简单,可快速应用于实际NLP项目中。
recurrent-memory-transformer-pytorch - Recurrent Memory Transformer的PyTorch实现助力超长序列处理
GithubPyTorchRecurrent Memory Transformer人工智能开源项目深度学习自然语言处理
Recurrent Memory Transformer的PyTorch实现项目致力于解决超长序列处理问题。该模型通过创新的记忆机制和高效注意力机制,可处理长达百万token的序列。项目提供简便的安装使用方法,支持XL记忆和记忆回放反向传播等先进功能。这一实现在长序列处理、因果推理和强化学习等领域展现出优异性能,为AI研究和应用开发提供了实用工具。
pytorch-transformer - 基于PyTorch的Transformer模型实现与Attention机制全解析
GithubYouTube视频pytorch-transformer实现开源项目步骤注意力机制
该项目实现了基于PyTorch的Transformer模型,通过详细的步骤和代码讲解,辅以‘Attention is all you need’论文的实现和YouTube视频教程,帮助用户掌握并应用Transformer模型。适合从事深度学习、自然语言处理的开发者和研究者。
Pretrained-Language-Model - 先进预训练语言模型与优化技术集合
GithubMindSporePyTorchTensorFlow开源项目自然语言处理预训练语言模型
此开源项目汇集了多个先进的预训练语言模型和相关优化技术。包含200B参数中文语言模型PanGu-α、高性能中文NLP模型NEZHA、模型压缩技术TinyBERT和DynaBERT等子项目。这些模型在多项中文NLP任务中表现出色,支持MindSpore、TensorFlow和PyTorch等多种深度学习框架。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号