Project Icon

Play-with-LLMs

一系列关于大型语言模型的训练、评估和应用的详细指南

Play-with-LLMs提供一系列关于大型语言模型的训练、评估和应用的详细指南,涉及RAG、Agent、Chain等多种结构,包括多个实用案例和应用代码。项目旨在帮助开发者迅速掌握并深入理解大型语言模型。

Meta-Llama-3.1-8B-Instruct - 创新技术实现大型语言模型微调的高效优化
GithubHuggingfaceLlama 3.1Unsloth内存优化开源项目性能提升模型模型微调
该项目开发了一种高效方法,大幅提升Llama 3.1、Gemma 2和Mistral等大型语言模型的微调效率。通过提供多个免费的Google Colab笔记本,项目使各类用户都能便捷地微调Llama-3 8B、Gemma 7B和Mistral 7B等模型。这些笔记本界面友好,适合各层次用户使用。采用此方法可将微调速度提升2-5倍,同时将内存使用降低最多70%,显著优化了资源利用。
self-llm - 开源大模型部署与应用指南
AutoDLGithub开源大模型开源项目微调方法环境配置部署使用
探索开源大模型如LLaMA、ChatGLM的全流程部署与微调指南,涵盖环境配置至应用实践,专为国内初学者设计,通过AutoDL平台简化操作流程,助力大模型技术的普及和应用。
Mistral-Nemo-Base-2407-bnb-4bit - 提高模型微调速度并优化内存占用
GithubGoogle ColabHuggingfaceMistralUnsloth开源项目微调效率模型
本项目使用Unsloth技术对Llama 3.1、Gemma 2和Mistral等模型提高微调速度,减少内存使用高达70%。通过免费的Google Colab笔记本,用户能够轻松完成微调过程,非常适合初学者使用。支持的模型包括Llama-3 8b、Gemma 7b、Mistral 7b等,这些模型在性能和内存使用上均有显著提升。
Llama-3.1-Nemotron-70B-Instruct-bnb-4bit - 基于Unsloth技术的大语言模型高性能微调框架
GithubHuggingfaceLlama 3.1NVIDIA代码优化开源项目模型模型微调深度学习
Unsloth优化的Llama 3.1 Nemotron 70B指令模型,在保持模型性能的同时实现内存占用降低70%、训练速度提升2-5倍的优化效果。该框架支持Llama 3.2、Mistral、Phi-3.5等主流大语言模型的微调,提供适配Google Colab的入门级notebooks,支持GGUF、vLLM等多种导出格式。
Mixtral-8x7B-Instruct-v0.1-llamafile - 多语言支持的创新llamafile格式
GithubHuggingfaceMistral AIMixtral 8X7B Instructllamafile兼容性开源项目模型量化
探索适用于Mixtral 8X7B Instruct版本的创新llamafile格式,该格式支持在六个操作系统平台上的兼容性,并支持法语、意大利语、德语、西班牙语和英语等多种语言。通过使用Cosmopolitan Libc将LLM权重转换为可运行的二进制文件,使其成为高级机器学习项目的理想选择。根据应用需求利用高效的量化方法,实现与llama.cpp、LM Studio和koboldcpp等软件的无缝集成。通过Q4_K_M等量化选项平衡质量,或通过Q5_K_M实现机器学习任务的最佳性能。
Mistral-Nemo-Instruct-2407-GGUF - 高效模型量化与优化指南
GithubHuggingfaceLlamaEdgeMistral-Nemo-Instruct-2407开源项目模型模型量化语言支持高搜索量
该项目介绍了多语言支持的Mistral-Nemo-Instruct-2407模型,其量化版本是由Second State Inc.完成的,涵盖从2位到16位的不同精度和质量损失模型。特别推荐使用具有最小质量损失的Q5_K_M和Q5_K_S版本。此外,还提供了在LlamaEdge上运行的服务和命令行应用指南,以便在配置上下文大小和自定义提示模板时满足不同应用的需求。本项目适合于在资源有限的环境中追求性能优化的用户。
Mistral-Nemo-Instruct-2407-GGUF - Mistral-Nemo模型在多语言文本生成中的量化应用
GithubHuggingfaceMistral-Nemo-Instruct-2407内存需求开源项目性能优化模型模型下载量化
Mistral-Nemo-Instruct-2407项目通过llama.cpp进行了高效的量化处理,优化了模型性能和文件大小。该模型适用于多种RAM和VRAM配置,提供不同量化格式以满足各种需求,尤其推荐使用Q6_K_L和Q5_K_L格式。这些量化后的模型可在LM Studio中执行,适合高质量文本生成任务。
Mixtral-8x7B-Instruct-v0.1-GGUF - Mixtral-8x7B多语言模型的GGUF量化版本
AI模型GGUFGithubHuggingfaceMistral AIMixtral 8X7B开源项目模型量化
本项目提供Mixtral-8x7B-Instruct-v0.1模型的GGUF量化版本。GGUF格式支持CPU和GPU高效推理,项目包含2至8比特多种量化等级文件。模型支持英、法、意、德、西等语言,适用多种NLP任务。用户可通过llama.cpp等工具便捷运行这些模型。
llama3-from-scratch - 深入解析Llama 3模型实现原理
GithubLlama3开源项目机器学习模型实现神经网络自然语言处理
本项目详细演示了Llama 3模型的实现过程,包括模型架构、分词、嵌入和注意力机制等核心技术。通过逐步解析模型文件和实现RMS归一化、旋转位置编码(RoPE)等关键组件,为开发者提供了构建大型语言模型的实践指南。项目结合代码实现和可视化说明,深入浅出地解释了复杂概念,是研究大型语言模型的重要参考资料。
llama-30b-instruct-2048 - 语言处理模型,专为增强文本生成能力设计
AI绘图GithubHuggingfaceLLaMA伦理考量开源项目数据集模型高性能
Llama-30b-instruct-2048模型由Upstage研发,基于LLaMA架构,优化用于生成文本,支持动态扩展处理10k+输入符号。在多项基准数据集上表现出色,并结合DeepSpeed与HuggingFace工具进行微调。使用该模型需获得持有Meta授权表单的许可。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号