Project Icon

REST

创新检索式推测解码加速大语言模型生成

REST是一种创新检索式推测解码方法,利用数据存储检索草稿令牌以加速大语言模型生成。无需额外训练,可即插即用于现有语言模型。在HumanEval和MT-Bench测试中,REST展现显著速度提升,为提高大语言模型效率开辟新途径。

PowerInfer - 消费级GPU上大型语言模型高效推理引擎
GPU加速GithubPowerInfer大语言模型局部性设计开源项目混合CPU/GPU使用
PowerInfer是一款在个人电脑上针对消费级GPU设计的高效大型语言模型(LLM)推理引擎。它结合激活局部性原理和CPU/GPU混合技术,通过优化热/冷激活神经元的处理方式,显著提高推理速度并降低资源消耗。软件还融入了适应性预测器和神经元感知技术,优化了推理效率和精度,支持快速、低延迟的本地模型部署。
DeepSeek-V2 - 兼顾效率与经济性的大规模混合专家语言模型
DeepSeek-V2Github大语言模型开源项目混合专家模型自然语言处理预训练模型
DeepSeek-V2是一款基于专家混合(MoE)架构的大规模语言模型,总参数量达2360亿,每个token激活210亿参数。相较于DeepSeek 67B,该模型在提升性能的同时,显著降低了训练成本和推理资源消耗。DeepSeek-V2在多项标准基准测试和开放式生成任务中表现优异,展现了其在多领域的应用潜力。
LLMLingua - 提示词压缩技术助力大语言模型效率提升
GithubLLMLingua大语言模型开源项目推理加速提示词压缩长文本处理
LLMLingua系列是一套创新的提示词压缩工具,可将提示词压缩至原长度的5%,同时保持大语言模型性能。通过小型语言模型识别并移除非必要标记,该技术有效解决长文本处理和上下文遗忘等问题,大幅降低API使用成本并提高推理效率。LLMLingua系列包含三个版本,适用于检索增强生成、在线会议和代码处理等多种场景。
model - 高效文本生成的突破:快速模型训练与推理
Apache许可证GithubHuggingfaceLLAMAUnsloth开源项目文本生成推理模型模型训练
该模型使用Unsloth和Huggingface的TRL库显著加速了训练过程,实现了高效文本生成。由keivenlombo开发,基于Apache-2.0许可,此模型为大规模语言模型的实施提供了一种便捷且准确的解决方案。
LoRA - 大型语言模型的低秩适配方法与参数节省
DeBERTaGLUEGPT-2GithubLoRARoBERTa开源项目
LoRA通过低秩分解矩阵实现大型语言模型的低秩适配,减少了训练参数数量,实现高效的任务切换和存储节省。它在GLUE基准测试中的表现与完全微调相当或更好,同时显著降低了参数需求。LoRA支持RoBERTa、DeBERTa和GPT-2等模型,并已集成到Hugging Face的PEFT库中,提供了便捷的适配解决方案。
OpenRLHF - 高性能强化学习框架助力大规模语言模型优化
GithubOpenRLHFRLHF框架分布式训练开源项目强化学习模型微调
OpenRLHF是一款基于Ray、DeepSpeed和Hugging Face Transformers构建的高性能强化学习框架。该框架简单易用,兼容Hugging Face模型和数据集,性能优于优化后的DeepSpeedChat。它支持分布式RLHF,能够在多GPU环境下进行70B+参数模型的全规模微调。OpenRLHF集成了多项PPO实现技巧以提升训练稳定性,同时支持vLLM生成加速和多奖励模型等先进特性,为大规模语言模型优化提供了强大支持。
DeepSeek-V2-Lite - 创新架构驱动的高效混合专家语言模型
DeepSeek-V2GithubHuggingface多头潜在注意力大规模语言模型开源项目模型混合专家模型自然语言处理
DeepSeek-V2-Lite是一款采用创新架构的混合专家(MoE)语言模型。通过多头潜在注意力(MLA)和DeepSeekMoE技术,该模型实现了训练和推理的高效性。模型总参数量为16B,激活参数为2.4B,在多项英文和中文基准测试中表现优异,超越了同类7B密集模型和16B MoE模型。DeepSeek-V2-Lite支持单40G GPU部署和8x80G GPU微调,为自然语言处理研究提供了一个高性能且资源友好的选择。
Quest - 长文本LLM推理的查询感知稀疏化框架
GithubKV缓存Quest开源项目注意力机制稀疏性长上下文LLM推理
Quest是一个创新的长文本LLM推理框架,通过在KV缓存中应用查询感知稀疏化技术,显著减少了注意力计算中的内存移动。该框架跟踪缓存页面的Key值范围,并利用Query向量评估页面重要性,仅加载最关键的KV缓存页面。实验表明,Quest可将自注意力计算速度提升至7.03倍,推理延迟降低2.23倍,同时在长依赖任务中保持高精度。
MInference - 动态稀疏注意力加速长上下文语言模型
GithubMInference动态稀疏注意力大语言模型开源项目性能优化长文本处理
MInference是一项新技术,通过利用长上下文语言模型注意力机制的动态稀疏性来加速预填充过程。该技术离线确定注意力头的稀疏模式,在线近似稀疏索引,并使用优化内核动态计算注意力。在A100 GPU上,MInference实现了预填充速度提升10倍,同时保持模型准确性。它支持LLaMA-3、GLM-4等多种长上下文模型,有效处理百万级别token的上下文。
rwkv-4-169m-pile - RNN与Transformer的高性能结合:高效文本生成
GPUGithubHuggingfaceRWKV人工神经网络开源项目文本生成模型转换脚本
RWKV项目由Bo Peng主导,结合RNN和Transformer的优势,提供强大的LLM性能,支持“无限”上下文长度、快速推理和节省显存。该模型支持并行训练,如GPT,可用于高效文本生成,并提供详细的使用和部署指南。项目中提供的多种硬件运行方案,使得用户能够轻松部署在不同环境中,享有快速且节能的文本生成体验,符合现代AI开发需求。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号