Project Icon

mtt-distillation

合成数据集优化训练性能,广泛适用于多个领域

通过匹配训练轨迹实现数据集蒸馏,减少模型训练所需的真实数据集数量并保持高性能。适用于ImageNet等大规模数据集,可生成低支撑的合成数据集和可拼接纹理。项目提供详细的实现步骤和代码,从下载仓库、生成专家轨迹到数据集蒸馏,帮助用户快速开始应用。还提供可视化工具和超参数设置指南,满足不同需求。此方法显著提高了模型训练效率,适合学术研究和工业应用。

SRe2L - 创新的ImageNet规模数据集压缩技术
GithubImageNetNeurIPS大规模数据开源项目数据集蒸馏自监督压缩
SRe2L项目提出了一种新颖的大规模数据集压缩方法,通过'挤压'、'恢复'和'重新标记'三个步骤实现ImageNet规模数据的高效压缩。该方法在NeurIPS 2023会议上获得spotlight展示,为数据集蒸馏领域带来新的研究视角。项目还包括SCDD和CDA等相关工作,共同推动数据集蒸馏技术在大数据时代的应用和发展。
TinyCLIP-ViT-8M-16-Text-3M-YFCC15M - 高效压缩CLIP模型的跨模态蒸馏方法
CLIPGithubHuggingfaceTinyCLIP图像分类开源项目模型视觉语言预训练跨模态蒸馏
TinyCLIP是一种创新的跨模态蒸馏方法,专门用于压缩大规模语言-图像预训练模型。该方法通过亲和力模仿和权重继承两项核心技术,有效利用大规模模型和预训练数据的优势。TinyCLIP在保持comparable零样本性能的同时,显著减少了模型参数,实现了速度和精度的最佳平衡。这一技术为高效部署CLIP模型提供了实用解决方案,在计算资源受限的场景下尤其有价值。
sd-vae-ft-mse - 改进稳定扩散自编码器提升图像重建效果
GithubHuggingfaceStable Diffusion图像生成开源项目模型模型微调深度学习自动编码器
sd-vae-ft-mse是一款经过微调的稳定扩散自编码器,在LAION-Aesthetics和LAION-Humans数据集上训练。该模型旨在提高图像重建质量,尤其是人脸细节。相比原始模型,它在PSNR和SSIM等指标上有明显提升,能够生成更平滑的图像。该模型可作为VAE组件轻松集成到现有的diffusers工作流中,用于稳定扩散图像生成。
flash-diffusion - 用于加速条件扩散模型的高效蒸馏技术
Flash DiffusionGithubLoRA加速技术图像生成开源项目扩散模型
Flash Diffusion是一种用于加速预训练扩散模型图像生成的蒸馏方法。该技术高效、快速、通用且兼容LoRA,在COCO数据集上实现了少步骤图像生成的先进性能。Flash Diffusion只需几小时GPU训练时间和较少可训练参数,适用于文本生成图像、图像修复、换脸和超分辨率等多种任务。它支持UNet和DiT等不同骨干网络,能够显著减少采样步骤,同时保持高质量的图像生成效果。
llm-data-creation - 大型语言模型驱动的自动数据生成框架
EMNLPGithub大语言模型开源项目微调数据创建评估
llm-data-creation是一个基于大型语言模型的数据生成框架。该项目仅需一个格式示例即可创建多种问答任务的合成数据,通过迭代过程生成更多相同格式的数据。这一方法特别适用于缺乏人工标注数据的场景。项目提供完整的数据创建、模型微调和评估流程,在10个公开基准数据集上的评估显示出优秀的跨域性能。
vitmatte-small-distinctions-646 - 基于ViTMatte模型的高效图像抠图技术
GithubHuggingfaceViTMatteVision Transformer图像抠图开源项目模型轻量化预训练
ViTMatte模型利用Distinctions-646数据集进行训练,通过与Vision Transformer的结合,实现图像前景的精确分离。此模型简化了传统图像抠图的复杂性,适用于多种应用。可在Hugging Face平台找到该模型的不同版本,以适应各种图像分离需求。
semantic-segmentation - 提供丰富数据集和易于定制的语义分割模型
GithubPyTorchSOTASemantic Segmentation开源项目数据集模型库
该项目提供易于使用和定制的SOTA语义分割模型,支持多种任务和数据集。适合高精度和定制应用场景,涵盖场景解析、人类解析、人脸解析等任务。特点包括多种主干网络和分割模型,支持PyTorch、ONNX、TFLite等框架的推理和导出。即将迎来重大更新,包括新的训练流程、预训练模型、教程和分布式训练支持。用户可通过详细文档和示例轻松使用并配置定制数据集,实现高效的语义分割。
MST - 多阶段光谱重建工具箱及算法
GithubMST++NTIRE 2022Spectral Compressive ImagingTransformer开源项目高光谱图像重建
本页面介绍了支持15种以上算法的光谱压缩成像重建工具箱,包括MST++等在NTIRE挑战中获奖的前沿方法。页面列出了TwIST、GAP-TV、DeSCI等顶级光谱重建算法,还提供了相关代码、预训练模型和实验结果,方便研究者进一步研究与应用。
MultiDiffusion - 基于预训练模型的多功能可控的图像生成框架
GithubMultiDiffusion可控生成图像生成开源项目扩散模型文本到图像
MultiDiffusion 是一个统一框架,通过预训练的文字转图像扩散模型,实现多功能且可控的图像生成,无需进一步训练或微调。该框架支持用户使用各种控制信号,如纵横比和空间引导信号,生成高质量、多样化的图像。MultiDiffusion 优化了多重扩散生成过程,使用一组共享参数或约束,支持局部和全局编辑,适用于如烟雾、火焰和雪等半透明效果。
fast-DiT - 改进PyTorch实现的可扩展扩散模型转换器
DiTGithubPyTorchTransformer图像生成开源项目扩散模型
fast-DiT 项目提供了扩散模型转换器(DiT)的改进 PyTorch 实现。该项目包含预训练的类条件 DiT 模型、Hugging Face Space 和 Colab 笔记本,以及优化的训练脚本。通过采用梯度检查点、混合精度训练和 VAE 特征预提取等技术,显著提升了训练速度和内存效率。这一实现为研究人员和开发者提供了探索和应用扩散模型的有力工具。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号