Project Icon

mtt-distillation

合成数据集优化训练性能,广泛适用于多个领域

通过匹配训练轨迹实现数据集蒸馏,减少模型训练所需的真实数据集数量并保持高性能。适用于ImageNet等大规模数据集,可生成低支撑的合成数据集和可拼接纹理。项目提供详细的实现步骤和代码,从下载仓库、生成专家轨迹到数据集蒸馏,帮助用户快速开始应用。还提供可视化工具和超参数设置指南,满足不同需求。此方法显著提高了模型训练效率,适合学术研究和工业应用。

DeepLearningProject - 全面教程涵盖数据集创建与深度学习
GithubHarvard UniversityPyTorchPython开源项目机器学习深度学习
本教程详细介绍了从创建自定义数据集到应用传统和深度学习算法的完整机器学习管道。基于哈佛大学高级数据科学课程项目,内容更新为PyTorch版本,适合希望深入理解和实践机器学习的用户。
ml-mdm - 开源框架实现高分辨率文本到图像生成模型
GithubMatryoshka Diffusion Models开源项目文本到图像生成深度学习神经网络模型高分辨率图像合成
ml_mdm是一个Python开源项目,实现了Matryoshka扩散模型技术用于文本到图像生成。该框架支持训练单个像素空间模型生成高达1024x1024分辨率的图像,开源了U-Net和嵌套U-Net的实现。项目提供预训练模型、Web演示和CC12M数据集上的训练教程,为高分辨率图像和视频合成提供完整解决方案。
diffusiondb - 大规模文本生成图像数据集,促进多领域研究
DiffusionDBGithubStable Diffusion开源项目数据集文本生成图像生成模型
DiffusionDB 是一个大规模文本生成图像数据集,包含1400万张由Stable Diffusion生成的图像,以真实用户的提示和超参数为基础。该数据集为研究生成模型与提示词的关系、检测深度伪造和设计人机交互工具提供了丰富资源,分为 DiffusionDB 2M 和 DiffusionDB Large 两个子集,满足不同需求。模块化的数据集结构使得用户可以高效加载所需部分。
stable-video-diffusion-img2vid-xt-1-1 - 从图像生成视频的扩散模型的稳定性
GithubHuggingfaceStable Video Diffusion开源项目模型研究用途规定条件视频生成非商业用途
Stable Video Diffusion 1.1 是一款专为研究用途而设计的图像到视频生成模型,通过优化固定条件和运动配置,实现了更一致的视频输出。该模型可以从单张图像生成25帧、分辨率为1024x576的视频片段,但不适用于精确表现真实人物或事件,且不能通过文本进行控制。在探讨生成模型的局限性和偏见时,该模型表现出色。欲了解更多信息,请访问 Stability AI 的 GitHub 仓库。
MT-UNet - 融合Transformer和UNet的医学图像分割新模型
GithubMT-UNet医学图像分割开源项目数据集准备权重文件模型训练
MT-UNet是一种结合Transformer和UNet优势的医学图像分割模型。该模型在Synapse和ACDC数据集上分别达到79.20%和91.61%的DSC评分。MT-UNet通过混合transformer结构实现多尺度特征融合,为医学图像分析提供新思路。项目开源代码和预训练权重,便于研究者复现结果和深入研究。
scalingup - 使用语言引导的机器人技能自动生成框架
GithubScaling Up and Distilling Down开源项目扩展任务数据生成机器人技能获取语言引导
该项目提出了一种无需专家示范、手动奖励监督和手动语言注释的语言引导技能学习框架。它能够通过任务描述自动生成多样化的机器人轨迹,并含有成功标签和详细的语言标签。该框架支持在多种NVIDIA GPU环境下运行,包括GTX 1080和RTX系列。
datasets - 公共数据集下载和准备的实用库
GithubMNISTTensorFlow Datasetstf.data.Dataset定制化开源项目性能
TensorFlow Datasets是一个公共数据集下载和准备的实用库,简化数据集加载与处理。通过其API,用户可以访问和使用多个预构建数据集,优化训练管道性能,并确保数据的确定性与可重复性。详情请参考官方教程、指南及API文档,支持在Colab笔记本中交互式操作。此工具适合快速集成数据集与进行机器学习模型训练的开发者。
AutoStudio - 提升多轮交互图像生成的主体一致性
AutoStudioGithub主体一致性多轮交互式图像生成大语言模型开源项目稳定扩散
AutoStudio是一个创新的多代理框架,专注于解决多轮交互式图像生成中的主体一致性问题。该框架包含主体管理器、布局生成器、监督器和绘图器四个核心组件。通过引入并行U-Net和主体初始化生成方法,AutoStudio实现了连贯多主体图像序列的生成。在CMIGBench基准测试中,该框架在平均Fréchet Inception Distance和平均字符-字符相似度方面分别提升了13.65%和2.83%,展示了其在多轮交互中保持多主体一致性的优异表现。
MFTCoder - 优化代码大模型性能的多任务微调框架
CodeFuseGithubHumanEvalMFTCoder代码大语言模型多任务微调开源项目
MFTCoder是一个开源的多任务微调框架,致力于提升代码大模型性能。该框架支持多种主流开源大模型,采用LoRA和QLoRA等高效微调方法,实现多任务平衡训练。MFTCoder还开源了多个高性能代码大模型和高质量数据集,在HumanEval等基准测试中表现优异。这一框架旨在促进代码大模型领域的协作与创新。
distil-large-v2 - 高效精简的Whisper语音识别模型
Distil-WhisperGithubHuggingfaceTransformers开源项目模型模型压缩自动语音识别语音识别
distil-large-v2是Whisper语音识别模型的蒸馏版本,推理速度提高6倍,模型体积减少49%,性能接近原始模型。采用编码器-解码器架构,通过精简解码器层数实现加速。支持英语短音频和长音频转录,可作为Whisper辅助模型进行推测解码。基于多个开源数据集训练,适用广泛语音识别场景。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号