Project Icon

GritLM-7B

开源大语言模型在文本生成和分类任务中展现突出表现

GritLM-7B在文本分类、检索和聚类等多项任务中表现优秀。实测数据显示,模型在AmazonPolarity分类任务达到96.52%准确率,Banking77分类达到88.47%准确率。此外,模型还集成了文本相似度计算、排序和聚类分析等功能,可应用于多样化的自然语言处理场景。

gritlm - 采用生成代表性指令微调技术的先进语言模型
Generative Representational Instruction TuningGithubGritLM嵌入开源项目生成语言模型
本页面详细介绍了生成代表性指令微调(GRIT)技术,该技术训练大型语言模型同时处理生成和嵌入任务。GritLM 7B在大规模文本嵌入基准测试(MTEB)中树立了新标杆,并在多种生成任务中表现出色。GritLM 8x7B在开放生成语言模型中表现最佳,同时在嵌入任务中保持领先。GRIT结合生成和嵌入训练,无性能损失,并提高了检索增强生成(RAG)的速度超过60%。代码和模型均已免费开放,欢迎社区贡献和使用。
GPT-JT-6B-v1 - 优化文本分类的先进语言模型
GPT-JTGithubHuggingfaceUL2分类任务开放数据集开源项目文本生成模型
GPT-JT-6B-v1采用去中心化训练和开放数据集,提升文本分类表现。结合UL2训练目标等先进技术,使其在计算效率上具有优势,优于大多数百亿参数模型。在多样化数据集如自然指令和P3上,GPT-JT利用标记和双向上下文学习,增强推断能力和语言处理功能。
internlm2-7b - 增强自然语言处理与长文本分析能力
GithubHuggingfaceInternLM开源开源项目性能评测模型长上下文
InternLM2-7B是一款开源自然语言处理模型,以其卓越的语言能力及对20万字符长文本的支持在评测中表现优异。适用于领域适配与复杂任务,提供代码开放与商用使用许可,便于研究与开发者的灵活使用与集成。
Starling-LM-7B-alpha - 开源模型在 MT Bench 测试中接近 GPT-4 水平
GithubHuggingfaceStarling-LM-7B-alpha人工智能开源项目机器学习模型自然语言处理语言模型
Starling-LM-7B-alpha 是一个基于人工智能反馈强化学习(RLAIF)训练的开源大语言模型。该模型利用 GPT-4 标注的 Nectar 数据集和创新的奖励训练策略,在 MT Bench 测试中获得 8.09 分,性能仅次于 GPT-4 和 GPT-4 Turbo。研究团队已开源相关数据集、模型和在线演示。Starling-LM-7B-alpha 在多项基准测试中展现出优异性能,显示了其作为开源模型的巨大潜力。
internlm2-base-7b - 高效处理超长文本的多功能开源模型
GithubHuggingfaceInternLM开源开源项目模型评测语言能力
InternLM2-Base-7B是一个适应性强的开源模型,支持处理长达20万字的文本,具备精确的信息检索能力,并在推理、数学、编程任务中表现优异。通过OpenCompass工具验证,其性能适合广泛应用,是研究人员和开发者的理想选择。
gte-large - 大型语言模型在句子相似度和多任务评估中的应用
GithubHuggingfaceMTEBSentence Transformerssentence-similarity开源项目数据集模型模型评估
gte-large是一个在MTEB多任务评估基准上表现优异的大型语言模型。该模型在句子相似度、文本分类、聚类和检索等多个自然语言处理任务中表现出色。在AmazonPolarityClassification等分类任务上,gte-large的准确率达到92.5%,展示了其在文本理解和分析方面的能力。这个模型适用于各种自然语言理解的应用场景。
bge-large-en - 英文句子嵌入模型在多种NLP任务中展现优异性能
GithubHuggingfacemteb向量检索开源项目机器学习模型模型评估自然语言处理
bge-large-en是一款英文句子嵌入模型,在MTEB基准测试中表现出色。该模型在文本分类、检索、聚类等多项自然语言处理任务中获得优异结果,尤其在亚马逊极性分类和Banking77分类等任务上表现突出。这个模型在MTEB基准测试的多个子任务中展现了优秀性能,包括亚马逊评论分类、问答检索、文本聚类等。值得注意的是,在亚马逊极性分类任务中,bge-large-en达到了91.94%的准确率,在Banking77分类任务中也取得了88%的准确率。这些结果表明该模型在多种文本处理场景中具有广泛的应用潜力。
bge-base-en-v1.5 - 增强文本处理能力的多任务学习模型
GithubHuggingfacesentence-transformers分类句子相似性句子聚类开源项目模型特征提取
bge-base-en-v1.5模型通过多任务学习优化自然语言处理技术,覆盖分类、检索、聚类和重排任务。在多个MTEB数据集上表现优异,例如在亚马逊情感分类任务中达到93.39%的准确率,在AskUbuntu重排任务中MRR达到74.28%。该模型具有MIT开源许可,适用于多种英语任务,为研究人员和开发者提供有效支持。
bge-en-icl - 先进的多语言自然语言处理模型
GithubHuggingfacesentence-transformers分类句子相似度开源项目检索模型特征提取
bge-en-icl是一个开源的句子嵌入模型,在MTEB基准测试的多项自然语言处理任务中表现出色。该模型支持多语言处理,适用于句子相似度计算、文本分类和信息检索等应用场景。在AmazonPolarity分类任务中,bge-en-icl达到了96.98%的准确率;在FEVER检索任务中,准确率达到92.83%。此外,该模型在其他任务如ArguAna检索和Banking77分类中也取得了优异成绩。bge-en-icl为研究人员和开发者提供了一个强大的工具,用于处理和分析各种文本数据。
NeuralMonarch-7B - 基于Mistral架构的7B参数大语言模型在多项基准测试中展现卓越性能
GithubHuggingfaceNeuralMonarch-7B人工智能模型开源项目模型深度学习自然语言处理语言模型
NeuralMonarch-7B是基于Monarch-7B开发的开源语言模型,通过DPO技术微调并使用LazyMergekit整合多个基础模型。在Nous基准测试中获得62.73分的平均成绩,支持8k上下文窗口,专注于指令理解和逻辑推理能力。模型提供GGUF量化版本,可用于聊天及推理等多种应用场景。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号