Project Icon

relora

使用ReLoRA实现高效深度学习模型训练

ReLoRA项目通过低秩更新实现高效深度学习训练,兼容Python 3.10+和PyTorch 2.0+,支持更大的微批次大小。用户可通过执行预处理和不同配置的训练脚本,达到高效分布式训练,并支持cosine重启调度和多GPU配置。项目涵盖了预热训练和ReLoRA重启,适用于各种规模的模型训练。

roberta-large - 基于HPU的深度学习模型优化配置和训练方案
GithubHuggingfaceOptimum HabanaRoBERTa开源项目模型模型训练深度学习硬件加速
这是一个专门为roberta-large模型开发的HPU优化配置方案。项目基于Optimum Habana框架,集成了Hugging Face生态系统,提供GaudiConfig配置文件实现混合精度训练、AdamW优化和梯度裁剪等核心功能。支持单机及多机HPU环境下的模型训练和部署,可用于问答等自然语言处理任务。
ray-llm - 简化LLM部署,利用Ray Serve和vLLM实现高效性能
AnyscaleGithubLLMRay ServeRayLLMvLLM开源项目
RayLLM是一种简便的解决方案,用于部署和管理多种开源LLM,利用Ray Serve和vLLM的功能,包括自动扩展、多GPU和多节点支持。RayLLM支持连续批处理和量化,大幅提高吞吐量并降低推理成本。通过REST API轻松迁移和测试,并集成多种LLM后端,提供灵活高效的解决方案。
x-flux - Flux模型的LoRA和ControlNet微调脚本
AI绘图ControlNetDeepSpeedFluxGithubLoRA开源项目
该项目为Flux图像生成模型提供LoRA和ControlNet微调脚本。使用DeepSpeed实现高效训练,并提供预训练检查点。包含详细的训练和推理指南,以及低内存模式和加速配置示例。项目计划未来发布更多ControlNet权重模型和IP-Adapters。
slowllama - 在Apple和nVidia设备上微调Llama2和CodeLLama模型
CodeLLamaGPUGithubLlama2M1/M2设备slowllama开源项目
slowllama是一个专注于微调Llama2和CodeLLama模型的开源项目,支持70B/35B模型版本,并可在Apple M1/M2设备(如Macbook Air、Mac Mini)或消费级nVidia GPU上运行。通过将模型部分数据转储到SSD或主内存,该项目避免使用量化技巧,优化正向和反向传递性能。采用LoRA方法限制参数更新,操作步骤详尽,包括依赖安装、模型下载和配置脚本,是在资源有限环境下进行大模型微调的理想选择。
Renate - 自动神经网络再训练的持续学习解决方案
GithubPyTorchRenate开源项目持续学习模型重训练神经网络
Renate是一个用于神经网络模型自动再训练的Python库,采用持续学习和终身学习算法。基于PyTorch和Lightning构建,通过Syne Tune实现超参数优化。该工具专门解决数据分布变化引起的灾难性遗忘问题,提升模型对新数据的适应能力。Renate支持云端部署,适合实际再训练场景,并提供便捷的高级超参数优化功能。
LECO - 扩散模型概念调整的低秩适应技术
GithubLECOLoRAStable Diffusion开源项目扩散模型概念擦除
LECO是一个基于低秩适应技术的开源项目,专注于扩散模型中概念的擦除、强调和替换。该项目支持多种预训练模型,提供灵活的配置选项,并可在不同GPU平台上运行。通过精心设计的提示词和LoRA权重,LECO不仅可以擦除概念,还能进行概念调整。这为研究人员和开发者提供了探索和改进AI生成模型概念控制能力的有力工具。
zero_nlp - 中文NLP训练与应用框架
Githubpytorchzero_nlp中文NLP大模型开源项目模型训练
zero_nlp是基于pytorch和transformers的中文NLP框架,支持从数据处理到模型部署的整个工作流程。它特别适用于处理大数据集、训练和部署多卡串联大模型,支持包括gpt2、clip在内的丰富模型类型,适用于文本分类、生成及多模态处理等多种任务。
LLM-FineTuning-Large-Language-Models - LLM微调实践与技术应用指南
Fine-tuningGithubLLMPEFTQLoRA开源项目量化
本项目介绍了如何使用ORPO、QLoRA、GPTQ等技术对大型语言模型(LLM)进行微调,包含具体实例和代码片段。项目还提供与这些技术相关的YouTube视频链接,提供全面的学习资料。此外,项目还包含各类实用工具和技术说明,帮助用户更好地理解和应用这些前沿技术。适合有一定编程基础的研究人员和开发者参考。
punica - 在单个预训练模型上高效运行多LoRA微调模型,文本生成吞吐量提升至12倍
GithubLoRAPunica多租户服务开源项目模型微调高效计算
Punica采用分段聚集矩阵-向量乘法(SGMV)技术,使多个LoRA微调模型在单个预训练模型上高效运行,仅增加1%的存储和内存开销。相比其他系统,Punica在各种LoRA模型请求下的文本生成吞吐量提升至12倍,适用于不同版本的CUDA和Python,支持二进制包和源码构建。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号