Project Icon

GiT

通用视觉Transformer模型实现多任务统一

GiT是一种通用视觉Transformer模型,采用单一ViT架构处理多种视觉任务。该模型设计简洁,无需额外视觉编码器和适配器。通过统一语言接口,GiT实现了从目标检测到图像描述等多任务能力。在多任务训练中,GiT展现出任务间协同效应,性能超越单任务训练且无负迁移。GiT在零样本和少样本测试中表现优异,并随模型规模和数据量增加而持续提升性能。

ViT-B-16-SigLIP-512 - SigLIP驱动的视觉语言预训练模型用于零样本图像分类
GithubHuggingfaceSigLIPViTzero-shot图像分类对比学习开源项目模型
ViT-B-16-SigLIP-512模型利用SigLIP (Sigmoid loss for Language-Image Pre-training)技术,在WebLI数据集上进行训练。作为一个视觉语言预训练模型,它主要用于零样本图像分类任务。该模型兼容OpenCLIP和timm库,可生成高质量的图像和文本嵌入,为图像分类、检索等计算机视觉和跨模态应用提供基础。
vit-small-patch16-224 - Google开发的轻量级视觉Transformer模型用于高效图像分类
GithubHuggingfaceImageNetVision Transformerpytorch-image-modelssafetensors图像分类开源项目模型
vit-small-patch16-224是Google开发的轻量级视觉Transformer模型,针对高效图像分类任务进行了优化。该模型由社区成员从timm仓库转换并上传至Hugging Face平台。它与ViT-base模型具有相同的使用方式,特别适合计算资源有限的应用场景。模型在ImageNet数据集上经过训练,可用于各种计算机视觉任务,如图像识别和分类。相比ViT-base,它具有更小的模型尺寸和更快的推理速度,同时保持了良好的性能表现。需要注意的是,模型的safetensors版本要求torch 2.0或更高版本的运行环境。
vit_base_patch16_224.dino - 自监督训练的ViT模型实现高效图像特征提取
DINOGithubHuggingfaceVision Transformer图像分类开源项目模型特征提取自监督学习
vit_base_patch16_224.dino是一个基于Vision Transformer架构的图像特征提取模型。该模型采用自监督DINO方法在ImageNet-1k数据集上预训练,可用于图像分类和特征提取。模型包含8580万参数,支持224x224像素的输入图像。通过timm库,研究人员可以便捷地将其应用于多种计算机视觉任务,深入探索自监督学习在视觉领域的潜力。
gill - 使用多模态语言模型的图像生成方法
CC3MGILLGithub图像生成多模态语言模型开源项目训练
GILL模型可处理交互的图像和文本输入以生成文本、检索图像及生成新图像。本文详细介绍了GILL模型的代码、预训练权重、环境设置、预训检查点和视觉嵌入的安装步骤。此外,还包括推理、训练及评估的指南,及启动Gradio演示的操作步骤。更多详情请参阅相关研究论文及项目页面。
Multimodal-GPT - 整合视觉与语言功能的多模态对话机器人
GithubOpenFlamingo多模态GPT开源项目联合训练视觉指令语言模型
Multimodal-GPT是一个基于OpenFlamingo多模态模型的项目,通过结合视觉指令和语言指令数据的联合训练,有效提升模型性能。该项目支持VQA、图像描述、视觉推理、文本OCR和视觉对话等多种数据类型,并利用LoRA进行参数高效的微调。探索Multimodal-GPT的广泛应用可能性。
chinese-clip-vit-base-patch16 - 中文数据驱动的多模态对比学习工具
Chinese-CLIPGithubHuggingface图像识别多模态检索开源项目模型深度学习零样本学习
项目通过ViT和RoBERTa实现了中文CLIP模型,支持图像和文本的嵌入计算及相似性分析,具备零样本学习和图文检索功能。该模型在多项基准测试中表现优秀,包括MUGE、Flickr30K-CN等。结合其官方API,用户可轻松实现多场景中的图文转换与识别。详细信息和实施教程可在GitHub获取。
ViT-SO400M-14-SigLIP - 基于SigLIP的视觉-语言模型实现零样本图像分类
GithubHuggingfaceSigLIPViT图像分类开源项目机器学习模型自然语言处理
ViT-SO400M-14-SigLIP是基于WebLI数据集训练的视觉-语言预训练模型,采用sigmoid损失函数进行图像和文本的联合学习。该模型在零样本图像分类任务中表现出色,具有良好的跨模态理解能力。通过OpenCLIP和timm库,用户可以方便地使用该模型生成图像和文本嵌入。ViT-SO400M-14-SigLIP适用于图像分类、图像检索等多种计算机视觉和自然语言处理任务。
Chat-UniVi - 统一视觉表示赋能大语言模型理解图像和视频
Chat-UniViGithub图像视频统一多模态大语言模型开源项目视觉理解
Chat-UniVi是一个多模态AI模型,采用统一的视觉表示方法实现图像和视频的同步理解。该模型运用动态视觉令牌技术,有效捕捉图像空间细节和视频时序关系。经过联合训练,Chat-UniVi在图像和视频理解任务中表现优异,性能超过专门设计的单一模态模型。模型支持多轮对话,能处理包含多个图像或视频的复杂场景,为视觉AI研究提供新思路。
litgpt - 基于最新技术的多功能大型语言模型库
AI模型GithubLitGPT大规模部署开源项目微调热门预训练
LitGPT为开发者提供超过20种高性能的大型语言模型(LLMs),具备从头开始的实现、无抽象层和企业级的性能优化。适合于训练、微调和部署大规模应用,支持新手入门,简化企业级部署流程。提供全面的Python API文档和优化教程,使得部署AI模型更快速、更经济、更有效率。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号