Project Icon

opus-mt-da-en

基于Transformer架构的丹麦语-英语神经机器翻译模型

opus-mt-da-en是一个丹麦语到英语的神经机器翻译模型,基于transformer-align架构。该模型使用OPUS数据集训练,应用了归一化和SentencePiece预处理技术。在Tatoeba测试集上,模型获得了63.6的BLEU分数和0.769的chr-F分数,显示出良好的翻译效果。模型提供预训练权重下载,可用于丹麦语到英语的翻译任务。

opus-mt-en-fi - 开源神经机器翻译模型实现英语到芬兰语的准确转换
BLEU评分GithubHuggingfaceOPUS-MT开源项目机器翻译模型英语到芬兰语语言模型
opus-mt-en-fi是一个开源的英语到芬兰语翻译模型,基于transformer架构。该模型使用OPUS数据集和bt-news数据进行训练,采用normalization和SentencePiece进行预处理。在newstest2019-enfi测试集上,模型实现了25.7的BLEU分数和0.578的chr-F分数,显示出较高的翻译准确度。模型提供原始权重下载和测试集翻译结果,方便研究者和开发者使用和评估。
opus-mt-es-en - 西班牙语至英语机器翻译模型 Tatoeba测试集BLEU评分59.6
GithubHuggingfaceOPUSTatoeba开源项目机器翻译模型英语西班牙语
opus-mt-es-en是一个基于Transformer架构的西班牙语至英语机器翻译模型。该模型在Tatoeba测试集上获得59.6的BLEU分数和0.739的chrF分数。模型采用规范化和SentencePiece进行预处理,适用于多种西班牙语到英语的翻译场景。作为OPUS项目的组成部分,该模型采用Apache 2.0许可证开源。
opus-mt-eo-en - 准确的跨语言翻译引擎,支持世界语到英语的转换
BLEU评分GithubHuggingfaceopus-mt-eo-en开源项目数据集机器翻译模型
该项目专注于世界语到英语的翻译,使用transformer-align模型进行处理,结合SentencePiece和数据规范化。其在Tatoeba数据集上达到了54.8的BLEU分数,展示了出色的翻译能力。用户可以获取模型的详细资源,如下载原始权重和查看测试结果及评估分数,为跨语言交流提供有效支持。
opus-mt-en-ru - 开源英俄翻译模型高性能机器翻译
BLEU评分GithubHuggingfaceopus-mt-en-ru开源项目机器翻译模型英俄翻译语言模型
opus-mt-en-ru是一个开源的英语到俄语机器翻译模型,基于transformer-align架构。该模型在newstest2012测试集上达到31.1的BLEU分数,展现出较好的翻译性能。模型使用OPUS数据集训练,采用normalization和SentencePiece进行预处理。此外,该项目还提供了多个测试集的评估结果,便于用户了解模型在不同场景下的表现。
opus-mt-no-de - 挪威语至德语双向机器翻译模型 实现29.6 BLEU评分
GithubHuggingfaceTatoeba-Challengetransformer-align开源项目德语挪威语机器翻译模型
opus-mt-no-de是一个开源的挪威语-德语神经机器翻译模型。该模型采用transformer-align架构,支持从挪威语的两种书面变体(Nynorsk和Bokmål)到德语的转换。模型使用SentencePiece进行文本预处理,在Tatoeba评测集上取得29.6 BLEU分数。项目开源于2020年6月,提供完整的模型文件及测试数据。
opus-mt-en-vi - 基于Transformer架构的英越翻译模型 实现37.2 BLEU评分
GithubHuggingfaceOPUSTatoeba开源项目机器翻译模型英语越南语
基于transformer-align架构开发的英语到越南语机器翻译模型,在Tatoeba测试集上达到37.2 BLEU分和0.542 chrF评分。模型使用SentencePiece技术进行分词预处理,支持英语到越南语(含喃字)的翻译功能。作为OPUS项目的组成部分,该模型于2020年6月发布,并提供完整的模型权重与测试数据集。
opus-mt-en-ca - transformer-align架构的英语-加泰罗尼亚语机器翻译模型
BLEU评分GithubHuggingfaceopus-mt-en-ca开源项目机器翻译模型模型评估语言对
opus-mt-en-ca是基于transformer-align架构的英语-加泰罗尼亚语机器翻译模型。该模型利用OPUS数据集训练,经过normalization和SentencePiece预处理。在Tatoeba测试集上,模型达到47.2的BLEU分数和0.665的chr-F分数。模型采用Apache-2.0开源许可证,支持从英语翻译到加泰罗尼亚语。提供原始权重和测试集译文下载,方便评估模型性能和进行深入分析。
opus-mt-fi-de - 基于Transformer架构的芬兰语德语机器翻译模型在Tatoeba测试集达到45.2 BLEU分数
BLEU评分GithubHuggingfaceopus-mt开源项目机器翻译模型芬德翻译语言模型
Helsinki-NLP基于transformer-align架构开发的芬兰语德语机器翻译模型,在OPUS数据集训练完成。模型使用normalization和SentencePiece预处理方法,在Tatoeba测试集获得45.2 BLEU分数和0.637 chr-F值。模型权重与测试数据已通过OPUS-MT-models平台开放获取
opus-mt-en-jap - 英日神经机器翻译模型:基于OPUS数据集的高效翻译工具
BLEU评分GithubHuggingfaceopus-mt-en-jap开源项目机器翻译模型英日翻译语言模型
opus-mt-en-jap是一个基于transformer架构的英日神经机器翻译模型。该模型在OPUS数据集上训练,采用SentencePiece进行预处理。在bible-uedin测试集上,模型获得了42.1的BLEU分数和0.960的chr-F分数,显示出优秀的翻译能力。这一开源项目为需要进行英日文本转换的研究人员和开发者提供了实用的工具,适用于文献翻译、跨语言交流等领域。作为高效的机器翻译和英日翻译工具,它为用户提供了强大的语言转换支持。
opus-mt-de-es - 德语到西班牙语的智能翻译工具,支持更高的翻译准确性
BLEU评分GithubHuggingfaceopus-mt-de-es开源项目模型翻译模型语言对预处理
该开源项目通过使用transformer-align模型,将德语翻译为西班牙语,依托opus数据集,进行标准化和SentencePiece的预处理,提升翻译的准确性。用户可以下载模型的原始权重并查看相应的翻译测试集及评分,以了解其性能。在Tatoeba.de.es测试集中获得了48.5分的BLEU评分和0.676的chr-F得分,其高效性能在翻译领域具备一定的竞争力。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号