Project Icon

opus-mt-en-af

英语到南非荷兰语翻译模型,使用变压器对齐和标准化预处理

该项目提供了英语到南非荷兰语的机器翻译模型,基于transformer-align算法和OPUS数据集,并采用了标准化和SentencePiece预处理。用户可以获取模型的原始权重和翻译测试结果,Tatoeba测试集的BLEU得分为56.1,显示出较高的翻译准确度。

opus-mt-ca-es - 加泰罗尼亚语至西班牙语的开源翻译工具
GithubHuggingfaceopus-mt-ca-es基准测试开源项目模型翻译预处理
这是一个开放源代码的加泰罗尼亚语到西班牙语翻译模型,采用transformer-align架构,具备良好性能。通过OPUS数据集和SentencePiece进行预处理,提供高质量且一致的翻译结果。支持下载模型权重和测试集,方便评估应用于语言转换需求。
opus-mt-no-de - 挪威语至德语双向机器翻译模型 实现29.6 BLEU评分
GithubHuggingfaceTatoeba-Challengetransformer-align开源项目德语挪威语机器翻译模型
opus-mt-no-de是一个开源的挪威语-德语神经机器翻译模型。该模型采用transformer-align架构,支持从挪威语的两种书面变体(Nynorsk和Bokmål)到德语的转换。模型使用SentencePiece进行文本预处理,在Tatoeba评测集上取得29.6 BLEU分数。项目开源于2020年6月,提供完整的模型文件及测试数据。
opus-mt-tc-big-en-pt - 从英译葡的先进神经机器翻译模型
GithubHuggingfaceMarian NMTOPUS-MT句子标记开源项目机器翻译模型神经机器翻译
该开源项目提供的神经机器翻译模型,旨在高效地将英语翻译为葡萄牙语。作为OPUS-MT项目的一部分,模型采用Marian NMT框架训练,并转化到PyTorch以兼容Transformers库。利用flores101-devtest等高质量数据集进行训练与评估,提供多语言目标支持,可应用于多种翻译场景。通过简单的Python示例代码,用户可以快速上手执行翻译任务。项目获得了欧盟资助,并得到了CSC -- IT Center for Science的支持。
opus-mt-en-bg - 英语到保加利亚语的开源神经机器翻译模型
GithubHuggingfaceOPUSTatoeba保加利亚语开源项目机器翻译模型英语
opus-mt-en-bg是一个基于Transformer架构的英语到保加利亚语机器翻译模型。该模型在Tatoeba测试集上达到50.6的BLEU分数和0.680的chrF值。它使用SentencePiece进行预处理,支持保加利亚语的拉丁字母变体,需要添加目标语言标记。这个模型是Helsinki-NLP开发的Tatoeba-Challenge项目的一部分,为英语到保加利亚语的翻译提供了开源解决方案。模型采用了normalization和SentencePiece (spm32k,spm32k)预处理方法,需要在句子开头添加'>>id<<'形式的目标语言标记。用户可以下载原始权重、测试集翻译和评分结果。该项目遵循Apache-2.0许可协议,为研究人员和开发者提供了可靠的英语到保加利亚语机器翻译资源。
happy-transformer - 便捷调优与推理NLP Transformer模型
GithubHappy TransformerNLP开源项目文本分类文本生成词预测
Happy Transformer提供简单的方法来调优和推理NLP Transformer模型,主要功能包括DeepSpeed训练、Apple的MPS训练及推理、WandB训练追踪以及直接推送模型到Hugging Face的Model Hub。支持的任务涵盖文本生成、文本分类、单词预测、问答、文本到文本、下一句预测和标记分类。
OFA - 多任务优化的跨模态序列到序列预训练模型
GithubOFA图像字幕多模态开源项目文本生成预训练模型
OFA是一个支持中文和英文的序列到序列预训练模型,整合了跨模态、视觉和语言任务,支持微调和提示调优。其应用包括图像描述、视觉问答、视觉定位、文本生成和图像分类等。项目提供了详细的预训练和微调步骤、检查点和代码示例,以及在Hugging Face和ModelScope上的在线演示和Colab笔记本下载。欢迎社区参与改进和开发。
OpenNMT-py - 开源的神经机器翻译与大型语言模型框架
EoleGithubLLM支持Neural Machine TranslationOpenNMT-pyPyTorch开源项目
OpenNMT-py是基于PyTorch的开源神经机器翻译和语言模型框架,适用于研究和生产。支持大语言模型转换、量化以及多GPU并行。提供教程、文档和社区支持,适合翻译、总结等多种NLP任务。最新版本引入了多查询注意力机制和线性去偏等新功能。
hardware-aware-transformers - 瞄准多硬件平台优化的自然语言处理Transformer模型
GithubHATNLPPyTorchTransformer开源项目硬件感知
HAT项目提供基于PyTorch的硬件感知Transformer,模型大小减小至原来的3.7倍,且性能无损。通过SuperTransformer搜索优化的SubTransformer,大幅降低搜索成本,并在不同硬件平台例如Raspberry Pi和Intel Xeon上实现显著加速。支持多种机器翻译任务,并提供预处理数据和预训练模型的直接下载。
joeynmt - 简洁而清晰的NMT模型实现,促进教育和学习
GRUGithubJoey NMTPyTorchTransformer开源项目机器翻译
Joey NMT框架专为教育而设计,提供简明和清晰的代码库,帮助初学者理解RNN和Transformer等经典NMT架构。其主要特点包括模块化设计,便于修改组件及训练流程,保持代码可读性。支持多个注意力机制、不同的分词类型和多语种翻译,包含详细的文档和教程,适用于模型训练、测试和翻译的各个阶段。最新版本引入分布式数据并行和多项优化,兼容最新的Python和PyTorch版本。
TransformerHub - 实现与参考多种Transformer模型
BERTGPTGithubTransformerTransformerHubViT开源项目
此项目实现了多种Transformer架构,包括seq2seq、仅编码器、仅解码器和统一模型,旨在提高编程技能并提供深度学习参考。特色包括多种Attention模块、位置嵌入和采样方法,当前进展是实现DINO模型。项目受到多个开源项目的启发和支持。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号