Project Icon

opus-mt-hi-en

基于OPUS数据集的印地语-英语开源机器翻译模型

opus-mt-hi-en是一个开源的印地语到英语机器翻译模型,基于transformer-align架构构建。该模型使用OPUS数据集训练,采用规范化和SentencePiece进行预处理。在Tatoeba测试集上,模型达到40.4的BLEU分数。项目提供预训练权重下载,便于用户部署和使用。此外,模型还在newsdev2014和newstest2014等测试集上进行了评估,为研究人员提供了性能参考。

opus-mt-en-hu - 基于Transformer的英匈双语机器翻译模型
BLEU评分GithubHuggingfaceopus-mt-en-hutransformer开源项目机器翻译模型自然语言处理
opus-mt-en-hu是一个英语到匈牙利语的机器翻译模型,采用Transformer架构设计。该模型基于OPUS数据集训练,应用了normalization和SentencePiece预处理技术。在Tatoeba测试集上,模型实现了40.1的BLEU分数和0.628的chr-F分数,表现出良好的翻译能力。模型提供了原始权重和测试集翻译结果供下载,便于进行评估和实际应用。
opus-mt-tr-en - 基于OPUS数据集的土耳其语英语机器翻译模型
BLEU评分GithubHuggingfaceOPUS-MT开源项目数据集机器翻译模型语言模型
opus-mt-tr-en是一个基于Transformer架构的土耳其语到英语机器翻译模型。该模型使用OPUS数据集训练,通过normalization和SentencePiece进行预处理。在多个测试集上表现优异,Tatoeba测试集上的BLEU分数达63.5。模型权重可供下载,便于研究人员和开发者进行评估和应用。
opus-mt-en-he - 基于OPUS数据集的英语-希伯来语机器翻译模型
GithubHuggingfaceOPUS-MT开源项目数据集机器翻译模型模型评估英语希伯来语翻译
这是一个基于transformer-align架构的英语-希伯来语翻译模型,采用Apache-2.0开源协议。模型在OPUS数据集上训练,使用规范化和SentencePiece进行预处理,在Tatoeba测试集上获得40.1 BLEU分和0.609 chr-F分。模型提供训练权重下载,可用于英语和希伯来语之间的翻译任务。
opus-mt-en-it - 基于Transformer的英意机器翻译模型
BLEU评分GithubHuggingfaceOPUS-MTtransformer模型开源项目机器翻译模型英语到意大利语
opus-mt-en-it是一个基于Transformer架构的英语到意大利语机器翻译模型。该模型使用OPUS数据集训练,经过normalization和SentencePiece预处理。在多个测试集上表现优异,其中Tatoeba测试集达到48.2 BLEU分和0.695 chr-F分。模型提供预训练权重下载和评估结果查看,可用于英意翻译任务。
opus-mt-ko-en - 基于transformer-align的开源韩英机器翻译模型
GithubHuggingfaceOPUSTatoebatransformer-align开源项目机器翻译模型韩英翻译
opus-mt-ko-en是一个开源的韩英机器翻译模型,采用transformer-align架构。模型在Tatoeba测试集上获得41.3 BLEU分数和0.588 chrF分数。它支持韩语(包括谚文、拉丁文和汉字)到英语的翻译,使用normalization和SentencePiece进行预处理。该项目提供模型权重、测试集翻译结果和评估数据,可用于研究和实际应用。
opus-mt-en-da - 基于OPUS数据集的英丹双语机器翻译模型
BLEUGithubHuggingfaceopus-mt-en-da开源项目数据集机器翻译模型模型评估
opus-mt-en-da是一个英语到丹麦语的机器翻译模型,基于transformer-align架构设计。该模型利用OPUS数据集训练,应用了normalization和SentencePiece预处理技术。在Tatoeba测试集上,模型展现出优秀的翻译性能,BLEU分数达60.4,chr-F分数为0.745。模型提供原始权重下载,便于研究者进行深入探索和实际应用。
opus-mt-en-nl - 基于OPUS数据集的英荷双语机器翻译模型
BLEU评分GithubHuggingfaceOPUS-MTTransformer开源项目机器翻译模型英语到荷兰语
opus-mt-en-nl是一个英语到荷兰语的机器翻译模型,基于transformer-align架构构建。该模型利用OPUS数据集训练,并应用了normalization和SentencePiece预处理技术。在Tatoeba测试集上,模型达到了57.1的BLEU分数和0.730的chr-F分数,显示出较高的翻译质量。模型提供了原始权重和测试集翻译结果的下载,方便研究者进行评估和应用。
opus-mt-zh-en - 赫尔辛基大学开发的中英双向翻译模型
GithubHelsinki-NLPHuggingfaceOPUS-MT中英翻译开源项目机器翻译模型自然语言处理
opus-mt-zh-en是赫尔辛基大学开发的中英双向翻译模型。该模型基于OPUS数据集训练,采用SentencePiece预处理,在Tatoeba测试集上BLEU得分为36.1。它使用Transformer架构,可用于文本翻译和生成。研究人员和开发者可通过Hugging Face transformers库便捷地使用该模型进行中英互译。
opus-mt-nl-en - 基于Transformer的荷兰语-英语机器翻译模型
GithubHuggingfaceOPUSTatoeba开源项目机器翻译模型英语荷兰语
opus-mt-nl-en是一个基于Transformer架构的荷兰语-英语神经机器翻译模型。该模型使用OPUS数据集训练,经过规范化和SentencePiece预处理。在Tatoeba测试集上,模型表现优异,BLEU得分为60.9,chr-F得分为0.749。开发者可获取原始权重和测试集翻译结果,便于进行评估和应用。
opus-mt-it-en - 基于OPUS数据集的意大利语至英语神经机器翻译模型
GithubHuggingfaceOPUS-MT开源项目意大利语机器翻译模型神经网络模型英语
opus-mt-it-en是一个基于transformer-align架构的意大利语至英语神经机器翻译模型。该模型利用OPUS数据集训练,采用normalization和SentencePiece进行预处理。在多个测试集上表现优异,尤其在Tatoeba测试集上获得70.9的BLEU分数和0.808的chr-F分数,显示出较高的翻译质量。此外,该模型在newssyscomb2009和newstest2009等其他测试集上也展现了出色的跨领域翻译能力。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号