Project Icon

opus-mt-tc-big-ar-en

高效的阿拉伯语到英语神经机器翻译模型,实现精准的跨语言转换

OPUS-MT项目开发的opus-mt-tc-big-ar-en是一款阿拉伯语到英语的神经机器翻译模型。该模型使用Marian NMT框架训练,支持现代标准阿拉伯语及其方言。在多个测试集上,模型展现出优秀性能,BLEU评分介于42.6至47.3之间。模型已转换为PyTorch格式,可通过Hugging Face的transformers库轻松使用。

opus-mt-et-en - 爱沙尼亚语到英语的高效翻译模型
BLEUGithubHuggingfaceSentencePieceopus-mt-et-entransformer-align开源项目模型翻译
此项目是一个开源的爱沙尼亚语到英语翻译模型,采用transformer-align架构和SentencePiece技术进行预处理。基于opus数据集进行训练,提供模型权重和测试集文件的下载链接。在多种测试集上表现出色,例如在Tatoeba测试集上取得了59.9的BLEU得分。该模型适合处理需要高质量翻译的爱沙尼亚语到英语文本。
opus-mt-en-zh - 英汉双向Transformer机器翻译模型
GithubHuggingfaceOPUSTatoeba-Challenge中文开源项目机器翻译模型英语
opus-mt-en-zh是基于Transformer架构的英汉双向机器翻译模型。支持英语与多种汉语变体间的翻译,包括简繁体中文、粤语等。模型在Tatoeba测试集上BLEU分数达31.4,翻译质量优异。采用SentencePiece预处理技术,需添加目标语言标记。适用于需要高质量英汉互译的各类应用场景。
opus-mt-de-en - 基于OPUS数据集的德英机器翻译模型
BLEU评分GithubHuggingfaceOPUS-MTTransformer模型开源项目德语到英语翻译机器翻译模型
opus-mt-de-en是一个基于OPUS数据集的德语到英语机器翻译模型。该模型采用transformer-align架构,并经过规范化和SentencePiece预处理。在多个新闻测试集上,模型表现优异,最高BLEU分数达43.7。模型支持多种测试集的翻译和评估,能够提供准确的德英翻译服务。该模型在新闻、科技等领域的翻译任务中表现尤为出色,适用于需要高质量德英翻译的各种应用场景。
opus-mt-zh-en - 赫尔辛基大学开发的中英双向翻译模型
GithubHelsinki-NLPHuggingfaceOPUS-MT中英翻译开源项目机器翻译模型自然语言处理
opus-mt-zh-en是赫尔辛基大学开发的中英双向翻译模型。该模型基于OPUS数据集训练,采用SentencePiece预处理,在Tatoeba测试集上BLEU得分为36.1。它使用Transformer架构,可用于文本翻译和生成。研究人员和开发者可通过Hugging Face transformers库便捷地使用该模型进行中英互译。
opus-mt-da-en - 基于Transformer架构的丹麦语-英语神经机器翻译模型
GithubHuggingfaceOPUS-MTtransformer-align丹麦语开源项目机器翻译模型英语
opus-mt-da-en是一个丹麦语到英语的神经机器翻译模型,基于transformer-align架构。该模型使用OPUS数据集训练,应用了归一化和SentencePiece预处理技术。在Tatoeba测试集上,模型获得了63.6的BLEU分数和0.769的chr-F分数,显示出良好的翻译效果。模型提供预训练权重下载,可用于丹麦语到英语的翻译任务。
opus-mt-fr-en - 基于OPUS数据集的法英神经机器翻译模型
BLEU评分GithubHuggingfaceopus-mt-fr-en开源项目机器翻译模型模型评估语言对
opus-mt-fr-en是一个基于OPUS数据集训练的法语到英语神经机器翻译模型。该模型采用Transformer-align架构,使用规范化和SentencePiece进行预处理。在多个新闻测试集上,模型表现出稳定的性能,BLEU分数介于26.2至38.7之间。值得注意的是,在Tatoeba测试集上,模型达到了57.5的BLEU分数和0.720的chr-F值,展现了其在不同领域的翻译能力。
opus-mt-it-en - 基于OPUS数据集的意大利语至英语神经机器翻译模型
GithubHuggingfaceOPUS-MT开源项目意大利语机器翻译模型神经网络模型英语
opus-mt-it-en是一个基于transformer-align架构的意大利语至英语神经机器翻译模型。该模型利用OPUS数据集训练,采用normalization和SentencePiece进行预处理。在多个测试集上表现优异,尤其在Tatoeba测试集上获得70.9的BLEU分数和0.808的chr-F分数,显示出较高的翻译质量。此外,该模型在newssyscomb2009和newstest2009等其他测试集上也展现了出色的跨领域翻译能力。
opus-mt-tc-base-en-sh - 多语言神经机器翻译模型,支持英-塞尔维亚-克罗地亚语转换
GithubHuggingfaceMarianNMTOPUS-MT开源项目机器翻译模型神经网络语言模型
该项目提供的神经机器翻译模型,支持从英语到塞尔维亚-克罗地亚语及其他语言的翻译。采用Marian NMT框架训练,使用transformers库转换为pyTorch格式。此模型由赫尔辛基大学开发,数据集来自OPUS项目,并采用SentencePiece进行预处理。适用于文本翻译和生成,包含代码示例与评估细节,遵循CC-BY-4.0许可。
opus-mt-pl-en - 基于OPUS数据集的波兰语-英语机器翻译模型
BLEU评分GithubHuggingfaceopus-mt-pl-en开源项目机器翻译模型波兰语英语
opus-mt-pl-en项目提供了模型权重下载、测试集翻译结果和评分文件。该模型采用transformer-align架构,专注于波兰语到英语的翻译。在Tatoeba测试集上,模型展现了优秀的性能,BLEU得分为54.9,chr-F得分为0.701。项目使用OPUS数据集训练,并应用了规范化和SentencePiece预处理技术,为波兰语-英语机器翻译研究和应用提供了有价值的资源。
opus-mt-sq-en - 中立且精准的阿尔巴尼亚语到英语翻译工具
GithubHuggingfaceopus-mt-sq-en开源项目数据集模型翻译预处理
项目提供了一种中立的阿尔巴尼亚语到英语翻译工具,基于transformer-align模型,并通过正规化和SentencePiece预处理,以opus数据集为基础。模型方便下载和评估,在Tatoeba.sq.en测试集中取得了58.4的BLEU得分和0.732的chr-F分数,适用于各种翻译需求。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号