Project Icon

opus-mt-tc-big-en-tr

OPUS-MT项目开发的英土双语神经机器翻译模型

opus-mt-tc-big-en-tr是OPUS-MT项目开发的英语到土耳其语神经机器翻译模型。该模型基于Transformer架构,在多个数据集上表现出色,最高BLEU分数达42.3。模型支持通过Hugging Face Transformers库使用,为英土翻译提供了可靠的解决方案。OPUS-MT项目旨在为全球多种语言对开发开源的神经机器翻译模型。

opus-mt-en-id - 英语至印尼语开源神经机器翻译模型
GithubHuggingfaceopus-mt-en-id开源项目数据集机器翻译模型模型评估自然语言处理
opus-mt-en-id是一个开源的英语到印尼语神经机器翻译模型,基于Transformer架构设计。该模型使用OPUS数据集训练,经过normalization和SentencePiece预处理。在Tatoeba测试集上,模型达到38.3 BLEU分和0.636 chr-F分的性能。项目提供预训练权重和测试集,方便研究人员进行评估和应用。
opus-mt-ca-en - 基于Transformer架构的加泰罗尼亚语-英语机器翻译模型
GithubHuggingfaceopus-mt-ca-en加泰罗尼亚语开源项目机器翻译模型模型评估英语
该模型采用transformer-align架构,实现加泰罗尼亚语到英语的翻译功能。模型使用normalization和SentencePiece进行预处理,在Tatoeba测试集达到51.4 BLEU评分。作为OPUS项目的组成部分,模型开放训练权重下载及测试评估数据,可用于加泰罗尼亚语-英语的自动翻译场景。
opus-mt-ko-en - 基于transformer-align的开源韩英机器翻译模型
GithubHuggingfaceOPUSTatoebatransformer-align开源项目机器翻译模型韩英翻译
opus-mt-ko-en是一个开源的韩英机器翻译模型,采用transformer-align架构。模型在Tatoeba测试集上获得41.3 BLEU分数和0.588 chrF分数。它支持韩语(包括谚文、拉丁文和汉字)到英语的翻译,使用normalization和SentencePiece进行预处理。该项目提供模型权重、测试集翻译结果和评估数据,可用于研究和实际应用。
opus-mt-en-hy - 英语到亚美尼亚语翻译模型,促进多语言交流
BLEUGithubHuggingfaceSentencePieceeng-hyetranslation开源项目模型
该项目提供英亚(英语-亚美尼亚语)翻译模型,基于Transformer-Align架构,结合SentencePiece处理,实现文本转换。其翻译能力在Tatoeba测试集中获得16.6的BLEU分数,表明良好的质量。用户可在GitHub页面查看详情,下载原始权重及测试集文件。项目采用Apache-2.0协议,便于开发者和研究人员在多语言环境中使用和再开发。
opus-mt-en-nl - 基于OPUS数据集的英荷双语机器翻译模型
BLEU评分GithubHuggingfaceOPUS-MTTransformer开源项目机器翻译模型英语到荷兰语
opus-mt-en-nl是一个英语到荷兰语的机器翻译模型,基于transformer-align架构构建。该模型利用OPUS数据集训练,并应用了normalization和SentencePiece预处理技术。在Tatoeba测试集上,模型达到了57.1的BLEU分数和0.730的chr-F分数,显示出较高的翻译质量。模型提供了原始权重和测试集翻译结果的下载,方便研究者进行评估和应用。
Opus-MT - 多语言神经机器翻译的开源框架
GithubMarian-NMTOPUS-MT多语言开源开源项目机器翻译
Opus-MT是一个开源的神经机器翻译项目,基于Marian-NMT框架开发。该项目利用OPUS数据集训练模型,结合SentencePiece分词和eflomal词对齐技术,提供多语言翻译功能。Opus-MT支持基于Tornado的Web应用和WebSocket服务两种部署方式,并提供大量预训练模型供用户下载。在Tiyaro.ai平台上,Opus-MT部署了543个在线演示API,方便用户体验。这个项目致力于为全球用户提供开放、便捷的翻译服务。
opus-mt-sq-en - 中立且精准的阿尔巴尼亚语到英语翻译工具
GithubHuggingfaceopus-mt-sq-en开源项目数据集模型翻译预处理
项目提供了一种中立的阿尔巴尼亚语到英语翻译工具,基于transformer-align模型,并通过正规化和SentencePiece预处理,以opus数据集为基础。模型方便下载和评估,在Tatoeba.sq.en测试集中取得了58.4的BLEU得分和0.732的chr-F分数,适用于各种翻译需求。
opus-mt-en-jap - 英日神经机器翻译模型:基于OPUS数据集的高效翻译工具
BLEU评分GithubHuggingfaceopus-mt-en-jap开源项目机器翻译模型英日翻译语言模型
opus-mt-en-jap是一个基于transformer架构的英日神经机器翻译模型。该模型在OPUS数据集上训练,采用SentencePiece进行预处理。在bible-uedin测试集上,模型获得了42.1的BLEU分数和0.960的chr-F分数,显示出优秀的翻译能力。这一开源项目为需要进行英日文本转换的研究人员和开发者提供了实用的工具,适用于文献翻译、跨语言交流等领域。作为高效的机器翻译和英日翻译工具,它为用户提供了强大的语言转换支持。
opus-mt-en-fi - 开源神经机器翻译模型实现英语到芬兰语的准确转换
BLEU评分GithubHuggingfaceOPUS-MT开源项目机器翻译模型英语到芬兰语语言模型
opus-mt-en-fi是一个开源的英语到芬兰语翻译模型,基于transformer架构。该模型使用OPUS数据集和bt-news数据进行训练,采用normalization和SentencePiece进行预处理。在newstest2019-enfi测试集上,模型实现了25.7的BLEU分数和0.578的chr-F分数,显示出较高的翻译准确度。模型提供原始权重下载和测试集翻译结果,方便研究者和开发者使用和评估。
opus-mt-hi-en - 基于OPUS数据集的印地语-英语开源机器翻译模型
BLEU评分GithubHuggingfaceopus-mt-hi-en开源项目数据集机器翻译模型语言模型
opus-mt-hi-en是一个开源的印地语到英语机器翻译模型,基于transformer-align架构构建。该模型使用OPUS数据集训练,采用规范化和SentencePiece进行预处理。在Tatoeba测试集上,模型达到40.4的BLEU分数。项目提供预训练权重下载,便于用户部署和使用。此外,模型还在newsdev2014和newstest2014等测试集上进行了评估,为研究人员提供了性能参考。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号