Project Icon

SmolLM-135M-Instruct

轻量级指令语言模型的高效实现

SmolLM-135M-Instruct是一个1.35亿参数的轻量级指令语言模型。经过高质量教育数据训练和公开数据集微调后,模型具备基础知识问答、创意写作和Python编程能力。支持MLC、GGUF等多种本地部署方案,可通过Transformers框架调用。v0.2版本进一步优化了对话质量和任务完成能力。

Phi-3-mini-128k-instruct - 38亿参数模型展现卓越推理能力和长上下文理解
GithubHuggingfacePhi-3人工智能大语言模型开源项目微软模型自然语言处理
Phi-3-mini-128k-instruct是一个参数量为38亿的开放模型,在各类推理任务中表现优异。它采用Phi-3数据集训练,具备128K的上下文长度处理能力,通过精心设计的后训练过程提升了指令遵循能力和输出安全性。该模型在13亿参数以下规模中展现出卓越性能,尤其适合需要强大推理能力的应用场景,如常识推理、语言理解、数学计算和代码编写等。
llm-jp-3-1.8b-instruct - 跨平台大规模语言模型的多语言开发与评估
GithubHuggingfacellm-jptransformers大规模语言模型开源项目指令微调模型预训练
项目由日本国家信息学研究所研发中心开发,提供支持多种编程语言的大型语言模型,如C、Python、Java。采用Transformer架构,模型经过大规模数据集的预训练与优化微调,适用于多语言环境。用户可通过Hugging Face Transformers库轻松集成与使用。项目提供模型技术细节、参数设置和语言标记器使用方法,以及多样化的数据集和评估方案,适用于中文、英文、日文等语言。
Llama-3_1-Nemotron-51B-Instruct - NVIDIA开发的高效大语言模型
GithubHuggingfaceLlama-3人工智能大语言模型开源项目模型神经网络架构搜索蒸馏
Llama-3_1-Nemotron-51B-Instruct是NVIDIA开发的大语言模型,采用神经架构搜索方法平衡准确性和效率。该模型内存占用低,可在单个H100-80GB GPU上运行大型工作负载。模型在英语对话和编程方面表现出色,也支持非英语语言。经过安全评估和对抗性测试,适合商业应用。
EasyInstruct - 大型语言模型指令处理框架简介
EasyInstructGPT-4GithubPython包大语言模型开源项目指令处理框架
EasyInstruct是一个易于使用的指令处理框架,适用于GPT-4、LLaMA、ChatGLM等大型语言模型。框架模块化实现指令生成、选择和提示,支持Self-Instruct、Evol-Instruct和反向翻译等技术,提供丰富的选择指标如长度、困惑度和GPT评分,并包含Shell脚本和Gradio应用的快速上手指南。
Meta-Llama-3-70B-Instruct - Meta开发的700亿参数指令微调大语言模型用于对话和生成
GithubHuggingfaceLlama 3Meta人工智能大型语言模型开源项目模型自然语言处理
Meta-Llama-3-70B-Instruct是Meta公司开发的700亿参数大语言模型,经指令微调优化对话能力。模型支持8k上下文长度,采用GQA架构提升推理效率。在多项基准测试中表现出色,具有良好的实用性和安全性。该模型可用于构建对话助手等自然语言生成任务,支持商业和研究用途。模型提供商业许可,可通过Transformers或原生llama3代码库使用。
Phi-3-mini-4k-instruct-llamafile - 提供跨平台AI权重,实现高效文本生成
AI模型GithubHuggingfacePhi-3-mini-4k-instruct开源项目推理能力模型责任感考量量化格式
Phi-3-Mini-4K-Instruct项目采用llamafile格式,提供可在Linux、MacOS、Windows等多平台运行的AI权重,适用于文本生成任务。其优化推理能力在语言理解、数学和代码等领域表现优异,尤其在内存和计算资源受限环境中有效。使用者需结合具体场景考虑模型适用性及潜在限制。
Mistral-Nemo-Instruct-2407-GGUF - 多语言指令微调大规模语言模型
GithubHuggingfaceMistral-Nemo-Instruct多语言大语言模型开源项目指令微调模型自然语言处理
Mistral-Nemo-Instruct-2407是一款基于Mistral-Nemo-Base-2407指令微调的大规模语言模型,支持128k上下文窗口。该模型在多语言和代码任务方面表现优异,可替代Mistral 7B使用。模型在主流基准测试中表现出色,并在多语言任务中展现强大能力。开发者可通过mistral_inference、transformers或NeMo框架使用该模型进行聊天、指令遵循和函数调用等多样化任务。Mistral-Nemo-Instruct-2407采用Apache 2许可证开源发布。
Qwen2-1.5B-Instruct-IMat-GGUF - 运用量化技术优化Qwen2-1.5B-Instruct模型的文本生成能力
GithubHuggingfaceIMatrixQwen2-1.5B-Instruct开源项目文本生成模型量化
项目利用llama.cpp对Qwen2-1.5B-Instruct模型进行量化,支持从8bit到1bit的多种位数及IMatrix数据集。这种方法能减少模型体积且保持性能多样,适用于不同文本生成任务。用户可使用huggingface-cli简便下载及合并文件,以满足不同应用需求。项目因其灵活性及高效性,适宜不同计算资源的使用者,为其提供多样选择。
Meta-Llama-3-8B-Instruct - Meta开发的大规模语言模型 支持多种自然语言处理任务
GithubHuggingfaceLlama 3Meta人工智能大语言模型开源项目模型自然语言处理
Meta-Llama-3-8B-Instruct是Meta公司开发的大型语言模型之一,参数规模为8B。该模型经过指令微调,优化了对话性能,在多项行业基准测试中表现优异。模型采用改进的Transformer架构,具有8k上下文窗口,适用于英语的商业和研究场景。它可用于开发聊天助手、生成文本等多种自然语言处理应用,在开发过程中重点关注了实用性和安全性。
Infinity-Instruct-3M-0613-Mistral-7B - 提升语言模型性能的开源指导调优模型
AlpacaEval2.0GithubHuggingfaceInfinity Instruct开源模型开源项目指令微调无反馈强化学习模型
Infinity-Instruct-3M-0613-Mistral-7B是一个开源的指导调优模型,无需人类反馈的强化学习。该模型在百万级指令数据集上经过微调,在AlpacaEval 2.0基准测试中取得了25.5的高分,表现优于Mixtral 8x7B v0.1、Gemini Pro和GPT-3.5。通过低成本训练提高了Mistral-7B的基础能力和对话能力,并在MT-Bench测试中表现出色。适合多样化的下游任务,该模型为研究与应用提供了良好的支持。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号