Project Icon

MP-Former

基于mask-piloted机制的先进图像分割模型

MP-Former是一种新型图像分割transformer模型,采用mask-piloted机制改进分割效果。项目包含训练和评估代码,适用于实例分割和全景分割任务。基于Mask2Former架构开发,在COCO数据集上展现出良好性能。项目提供了复现论文实验的脚本,为计算机视觉研究提供参考实现。MP-Former在CVPR 2023上发表,提供了no noise和all-layer MP训练设置,12轮训练后在实例分割任务上达到40.15 AP。项目代码开源,安装过程与Mask2Former相同,便于研究者快速上手和进行进一步探索。

GroupMixFormer - 视觉Transformer的群组混合注意力革新
GithubGroupMixFormer图像分类开源项目自注意力机制视觉Transformer计算机视觉
GroupMixFormer是一种创新的视觉Transformer模型,引入群组混合注意力(GMA)机制来增强传统自注意力。GMA可同时捕捉不同尺度的token和群组相关性,显著提升模型表征能力。在多项计算机视觉任务中,GroupMixFormer以较少参数实现了领先性能。其中GroupMixFormer-L在ImageNet-1K分类上达到86.2% Top-1准确率,GroupMixFormer-B在ADE20K分割上获得51.2% mIoU,展现出强大潜力。
segformer-b5-finetuned-ade-640-640 - SegFormer-b5模型用于ADE20k数据集的语义分割
GithubHuggingfaceSegFormerTransformer图像处理开源项目模型深度学习语义分割
SegFormer-b5是一个针对ADE20k数据集640x640分辨率微调的语义分割模型。该模型采用层次化Transformer编码器和轻量级MLP解码头,在ADE20K等基准测试中表现优异。模型在ImageNet-1k预训练后,添加解码头并在目标数据集上微调,可应用于多种语义分割任务。
MixFormer - 基于迭代混合注意力的端到端目标跟踪框架
GithubMixFormer开源项目注意力机制深度学习目标追踪计算机视觉
MixFormer是一种创新的端到端目标跟踪框架,采用目标-搜索混合注意力(MAM)骨干网络和角点头部结构,实现了无需显式集成模块的紧凑跟踪流程。这种无后处理方法在LaSOT、GOT-10K和TrackingNet等多个基准测试中表现卓越,并在VOT2020上取得0.584的EAO成绩。项目开源了代码、模型和原始结果,为目标跟踪研究领域提供了宝贵资源。
mit-b5 - SegFormer层次化Transformer编码器预训练模型
GithubHuggingfaceSegFormerTransformer图像分类开源项目模型语义分割预训练模型
SegFormer (b5-sized) encoder是一个在ImageNet-1k上预训练的语义分割模型。它采用层次化Transformer编码器结构,为下游任务微调提供基础。该模型在ADE20K和Cityscapes等语义分割基准测试中表现优异,同时也适用于图像分类等相关任务。用户可通过简洁的Python代码轻松调用此模型进行实验和应用开发。
SpA-Former-shadow-removal - Transformer模型实现高效图像去阴影
GithubIJCNN 2023SpA-FormerTransformer图像阴影去除开源项目注意力机制
SpA-Former是一种基于Transformer的图像去阴影模型,采用空间注意力机制提取阴影特征。在ISTD数据集上,该模型在PSNR、SSIM和RMSE指标方面表现出色。SpA-Former具有参数量少、计算效率高的特点,适用于实际场景的阴影去除。该研究已在IJCNN 2023会议发表,并开源了预训练模型和测试结果,便于研究者复现和对比。
metaformer - 一系列视觉基线模型
CAFormerConvFormerGithubIdentityFormerMetaFormerRandFormer开源项目
MetaFormer项目推出多款视觉基线模型,包括IdentityFormer、RandFormer、ConvFormer和CAFormer。这些模型在ImageNet-1K数据集上表现出色,根据不同的token mixer架构,如身份映射、全局随机混合、可分离深度卷积和自注意机制,在224x224分辨率下的Top-1准确率均超过80%。特别是CAFormer,在无外部数据或蒸馏的条件下,达到85.5%的准确率记录。这些模型已集成到timm库中,方便应用和扩展。
segformer-b1-finetuned-ade-512-512 - SegFormer-b1在ADE20k数据集上微调的语义分割模型
GithubHuggingfaceSegFormerTransformer图像处理开源项目模型深度学习语义分割
SegFormer-b1是一种针对语义分割任务的深度学习模型,在ADE20k数据集上进行了微调。该模型结合了层次化Transformer编码器和轻量级MLP解码头,在512x512分辨率下展现出优秀的分割效果。模型经过ImageNet-1k预训练后,通过添加解码头并在特定数据集上微调,可直接应用于语义分割或作为其他相关任务的基础。
mit-b1 - SegFormer分层Transformer编码器用于语义分割
GithubHuggingfaceSegFormerTransformer图像分割开源项目机器学习模型语义分割
mit-b1是SegFormer模型的预训练编码器,采用分层Transformer结构,在ImageNet-1k数据集上完成预训练。该模型主要用于语义分割任务的微调,可通过添加轻量级全MLP解码头实现。mit-b1在ADE20K和Cityscapes等基准测试中表现优异,为语义分割提供了高效的特征提取能力,适用于多种下游任务。
segformer-b0-finetuned-ade-512-512 - SegFormer-b0模型实现高效语义分割
GithubHuggingfaceSegFormer图像处理开源项目模型深度学习计算机视觉语义分割
SegFormer-b0是一个在ADE20k数据集上微调的语义分割模型,采用512x512分辨率。其特点是结合了层次化Transformer编码器和轻量级MLP解码头,在语义分割任务中表现优异。模型经过ImageNet-1k预训练后,添加解码头并在特定数据集上微调。研究者可直接应用于语义分割,或根据需求选择针对性微调的版本。
actionformer_release - 基于Transformer的高精度动作时刻定位模型
ActionFormerActivityNetGithubTHUMOS14Transformer开源项目时序动作定位
actionformer_release是一个基于Transformer的动作定位模型,能够检测动作实例的起止点并识别动作类别。在THUMOS14数据集上,该模型取得了71.0%的mAP,超越之前的最佳模型14.1个百分点,并首次突破60%的mAP。此外,该模型在ActivityNet 1.3和EPIC-Kitchens 100数据集上也取得了优异成绩。该项目设计简洁,通过局部自注意力机制对未剪辑视频进行时间上下文建模,并可一次性精确定位动作时刻。代码和预训练模型已开源,可供下载和试用。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号