Project Icon

bayesian-torch

贝叶斯神经网络层和不确定性估计的PyTorch扩展库

Bayesian-Torch是PyTorch的扩展库,用于在深度学习模型中实现贝叶斯推理和不确定性估计。它提供贝叶斯层,支持将确定性神经网络转换为贝叶斯形式。库包含变分推理、MOPED、量化和AvUC损失等功能,适用于不确定性感知应用。研究人员和开发者可利用Bayesian-Torch构建更可靠、可解释的AI模型。

adversarial-attacks-pytorch - 提供对抗攻击方法的PyTorch库,支持多种攻击技术
Adversarial ExamplesGithubPyTorchTorchattacks对抗攻击开源项目计算机视觉
Torchattacks是一个专为PyTorch用户设计的对抗攻击库,提供类似PyTorch的接口和函数,便于生成对抗样本。支持包括FGSM、PGD、CW和AutoAttack在内的多种攻击方法,并附有详细的使用案例和安装指南,适用于机器学习和深度学习模型的安全性测试和对抗训练效果的提升。
torchdyn - PyTorch数值深度学习库,支持微分方程和数值方法
GithubPyTorchTorchdyn开源项目微分方程数值方法深度学习
Torchdyn是一个专注于数值深度学习的PyTorch库,涵盖微分方程、积分变换和数值方法。它提供便捷的工具和层,用于构建神经微分方程和复合模型,并支持GPU加速和多种数值方法。该库与PyTorch和pytorch-lightning高度集成,使得用户能够快速上手,推进研究和应用。
flashtorch - 基于PyTorch的神经网络可视化工具
FlashTorchGithubPyTorch可视化开源项目特征可视化神经网络
FlashTorch是基于PyTorch的神经网络可视化工具,通过简单的接口实现特征可视化技术,如显著性图和激活最大化。该工具兼容torchvision预训练模型和自定义PyTorch模型,有助于研究人员和开发者理解、解释及优化神经网络的内部工作机制。FlashTorch仅需几行代码即可应用,为深入分析神经网络提供了便捷途径。
mixture-of-experts - PyTorch实现的稀疏门控专家混合层
GithubPyTorch专家混合开源项目机器学习深度学习神经网络
mixture-of-experts项目提供PyTorch版本的稀疏门控专家混合层实现,基于'Outrageously Large Neural Networks'论文。该实现支持自定义专家数量和输入输出维度,并提供训练和评估示例。项目包含CIFAR-10数据集应用实例,展示实际性能。作为深度学习工具,它有助于构建大规模高效的神经网络模型。
torch-imle - 将离散优化算法融入深度学习的创新方法
GithubI-MLEPyTorch开源项目梯度估计深度学习组合优化
torch-imle是一个PyTorch库,通过I-MLE梯度估计器将离散优化算法融入深度学习。它使用创新的采样和分布方法,实现了离散优化问题在深度学习中的应用,如最短路径学习。该库采用Perturb-and-MAP方法和新颖的噪声扰动来近似采样复杂分布,并提供替代经验分布。torch-imle通过梯度下降学习最优路径权重,为深度学习中的离散优化问题提供强大的解决方案。
torchscale - 高效扩展Transformer模型的PyTorch开源库
DeepNetGithubLongNetPyTorchTorchScaleTransformers开源项目
TorchScale是一个PyTorch开源库,旨在帮助研究人员和开发者有效扩展Transformer模型。该库专注于开发基础模型和AGI架构,提升建模的通用性、能力以及训练的稳定性和效率。其关键功能包括DeepNet的稳定性、Foundation Transformers的通用性、可延展性的Transformer和X-MoE的效率。最新更新涉及LongNet和LongViT等创新架构,支持多种应用,如语言、视觉和多模态任务,用户仅需几行代码即可快速创建和调整模型。
Laplace - 神经网络拉普拉斯近似的开源库
GithubLaplace后验近似开源项目神经网络贝叶斯深度学习边缘似然
Laplace是一个用于神经网络拉普拉斯近似的Python库。它支持对整个网络、子网络或最后一层进行后验近似、边际似然估计和后验预测计算。该库提供API接口,支持多种Hessian结构和权重子集,可用于模型选择、不确定性量化和持续学习。Laplace兼容Hugging Face模型和参数高效微调方法,为贝叶斯深度学习提供了灵活的实现工具。
hBayesDM - 分层贝叶斯决策建模工具支持R和Python
GithubR语言hBayesDM决策任务分层贝叶斯模型开源项目计算精神病学
hBayesDM是一个为决策任务提供分层贝叶斯分析的开源软件包。它基于Stan进行贝叶斯推断,支持R和Python语言。该工具能分析强化学习和决策制定的神经计算机制,为心理学、神经科学和行为经济学等领域的研究者提供强大的分析支持。项目提供详细教程、邮件列表和问题报告渠道,便于使用和问题解决。
pytorch-lightning - 深度学习框架的全方位AI模型训练与部署解决方案
AI模型训练GithubLightning FabricPyTorch Lightning开源项目模型部署深度学习热门
深度学习框架Pytorch-Lightning 2.0版本现已推出,提供清晰稳定的API,支持AI模型的预训练、微调和部署。该框架轻松实现Pytorch代码组织,将科学研究与工程实现分离,帮助研究人员和工程师高效进行模型训练与部署。通过提供各种训练和部署选项以及兼容多种硬件和加速器,Pytorch-Lightning兼顾模型的灵活性和可扩展性,适应从初学者到专业AI研究的不同需求。
edward2 - 概率编程语言,为深度学习生态系统设计,支持编写和操控模型用于灵活的训练和推断
Edward2GithubTensorFlow开源项目概率编程模型训练深度学习
Edward2是一个简洁易用的概率编程语言,为深度学习生态系统设计,支持编写和操控模型用于灵活的训练和推断。项目包括核心库代码、示例和前沿研究,同时支持TensorFlow、JAX和NumPy后端。用户可将随机变量与TensorFlow操作结合,开展如贝叶斯逻辑回归等任务。此外,Edward2支持模型计算操作追踪及程序转换,满足各种训练和测试需求。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号