Project Icon

nlu

强大而简洁的自然语言处理Python库

NLU是一款功能丰富的Python库,整合了1000多个预训练模型,支持100多种语言的文本挖掘任务。该库将复杂的NLP任务简化为单行代码操作,大大提高了文本分析的效率。NLU兼容多种数据格式,包括Pandas、Spark和Modin等数据框架,以及numpy数组和字符串列表。从词嵌入到情感分析、命名实体识别,NLU提供了全面的NLP功能,是自然语言处理领域的重要工具。

NLU: The Power of Spark NLP, the Simplicity of Python

John Snow Labs' NLU is a Python library for applying state-of-the-art text mining, directly on any dataframe, with a single line of code. As a facade of the award-winning Spark NLP library, it comes with 1000+ of pretrained models in 100+, all production-grade, scalable, and trainable, with everything in 1 line of code.

NLU in Action

See how easy it is to use any of the thousands of models in 1 line of code, there are hundreds of tutorials and simple examples you can copy and paste into your projects to achieve State Of The Art easily.

NLU & Streamlit in Action

This 1 line let's you visualize and play with 1000+ SOTA NLU & NLP models in 200 languages

streamlit run https://raw.githubusercontent.com/JohnSnowLabs/nlu/master/examples/streamlit/01_dashboard.py 

NLU provides tight and simple integration into Streamlit, which enables building powerful webapps in just 1 line of code which showcase the. View the NLU&Streamlit documentation or NLU & Streamlit examples section. The entire GIF demo and

All NLU resources overview

Take a look at our official NLU page: https://nlu.johnsnowlabs.com/ for user documentation and examples

RessourceDescription
Install NLUJust run pip install nlu pyspark==3.0.2
The NLU NamespaceFind all the names of models you can load with nlu.load()
The nlu.load(<Model>) functionLoad any of the 1000+ models in 1 line
The nlu.load(<Model>).predict(data) functionPredict on Strings, List of Strings, Numpy Arrays, Pandas, Modin and Spark Dataframes
The nlu.load(<train.Model>).fit(data) functionTrain a text classifier for 2-Class, N-Classes Multi-N-Classes, Named-Entitiy-Recognition or Parts of Speech Tagging
The nlu.load(<Model>).viz(data) functionVisualize the results of Word Embedding Similarity Matrix, Named Entity Recognizers, Dependency Trees & Parts of Speech, Entity Resolution,Entity Linking or Entity Status Assertion
The nlu.load(<Model>).viz_streamlit(data) functionDisplay an interactive GUI which lets you explore and test every model and feature in NLU in 1 click.
General ConceptsGeneral concepts in NLU
The latest release notesNewest features added to NLU
Overview NLU 1-liners examplesMost common used models and their results
Overview NLU 1-liners examples for healthcare modelsMost common used healthcare models and their results
Overview of all NLU tutorials and Examples100+ tutorials on how to use NLU on text datasets for various problems and from various sources like Twitter, Chinese News, Crypto News Headlines, Airline Traffic communication, Product review classifier training,
Connect with us on SlackProblems, questions or suggestions? We have a very active and helpful community of over 2000+ AI enthusiasts putting NLU, Spark NLP & Spark OCR to good use
Discussion ForumMore indepth discussion with the community? Post a thread in our discussion Forum
John Snow Labs MediumArticles and Tutorials on the NLU, Spark NLP and Spark OCR
John Snow Labs YoutubeVideos and Tutorials on the NLU, Spark NLP and Spark OCR
NLU WebsiteThe official NLU website
Github IssuesReport a bug

Getting Started with NLU

To get your hands on the power of NLU, you just need to install it via pip and ensure Java 8 is installed and properly configured. Checkout Quickstart for more infos

pip install nlu pyspark==3.0.2

Loading and predicting with any model in 1 line python

import nlu 
nlu.load('sentiment').predict('I love NLU! <3') 

Loading and predicting with multiple models in 1 line

Get 6 different embeddings in 1 line and use them for downstream data science tasks!

nlu.load('bert elmo albert xlnet glove use').predict('I love NLU! <3') 

What kind of models does NLU provide?

NLU provides everything a data scientist might want to wish for in one line of code!

  • NLU provides everything a data scientist might want to wish for in one line of code!
  • 1000 + pre-trained models
  • 100+ of the latest NLP word embeddings ( BERT, ELMO, ALBERT, XLNET, GLOVE, BIOBERT, ELECTRA, COVIDBERT) and different variations of them
  • 50+ of the latest NLP sentence embeddings ( BERT, ELECTRA, USE) and different variations of them
  • 100+ Classifiers (NER, POS, Emotion, Sarcasm, Questions, Spam)
  • 300+ Supported Languages
  • Summarize Text and Answer Questions with T5
  • Labeled and Unlabeled Dependency parsing
  • Various Text Cleaning and Pre-Processing methods like Stemming, Lemmatizing, Normalizing, Filtering, Cleaning pipelines and more

Classifiers trained on many different datasets

Choose the right tool for the right task! Whether you analyze movies or twitter, NLU has the right model for you!

  • trec6 classifier
  • trec10 classifier
  • spam classifier
  • fake news classifier
  • emotion classifier
  • cyberbullying classifier
  • sarcasm classifier
  • sentiment classifier for movies
  • IMDB Movie Sentiment classifier
  • Twitter sentiment classifier
  • NER pretrained on ONTO notes
  • NER trainer on CONLL
  • Language classifier for 20 languages on the wiki 20 lang dataset.

Utilities for the Data Science NLU applications

Working with text data can sometimes be quite a dirty job. NLU helps you keep your hands clean by providing components that take away from data engineering intensive tasks.

  • Datetime Matcher
  • Pattern Matcher
  • Chunk Matcher
  • Phrases Matcher
  • Stopword Cleaners
  • Pattern Cleaners
  • Slang Cleaner

Where can I see all models available in NLU?

For NLU models to load, see the NLU Namespace or the John Snow Labs Modelshub or go straight to the source.

Supported Data Types

  • Pandas DataFrame and Series
  • Spark DataFrames
  • Modin with Ray backend
  • Modin with Dask backend
  • Numpy arrays
  • Strings and lists of strings

Overview of all tutorials using the NLU-Library

In the following tabular, all available tutorials using NLU are listed. These tutorials will help you learn the usage of the NLU library and on how to use it for your own tasks. Some of the tasks NLU does are translating from any language to the english language, lemmatizing, tokenizing, cleaning text from Symbol or unwanted syntax, spellchecking, detecting entities, analyzing sentiments and many more!

{:.table2}

Tutorial DescriptionNLU Spells UsedOpen In ColabDataset and Paper References
Albert Word Embeddings with NLUalbert, sentiment pos albert emotionOpen In ColabAlbert-Paper, Albert on Github, Albert on TensorFlow, T-SNE, T-SNE-Albert, Albert_Embedding
Bert Word Embeddings with NLUbert, pos sentiment emotion bertOpen In ColabBert-Paper, Bert Github, T-SNE, T-SNE-Bert, Bert_Embedding
BIOBERT Word Embeddings with NLUbiobert , sentiment pos biobert emotionOpen In ColabBioBert-Paper, Bert Github , BERT: Deep Bidirectional Transformers, Bert Github, T-SNE, T-SNE-Biobert, Biobert_Embedding
COVIDBERT Word Embeddings with NLUcovidbert, sentiment covidbert posOpen In ColabCovidBert-Paper, Bert Github, T-SNE, T-SNE-CovidBert, Covidbert_Embedding
ELECTRA Word Embeddings with NLUelectra, sentiment pos en.embed.electra emotionOpen In ColabElectra-Paper, T-SNE, T-SNE-Electra, Electra_Embedding
ELMO Word Embeddings with NLUelmo, sentiment pos elmo emotionOpen In ColabELMO-Paper, Elmo-TensorFlow, T-SNE, T-SNE-Elmo, Elmo-Embedding
GLOVE Word Embeddings with NLUglove, sentiment pos glove emotionOpen In ColabGlove-Paper, T-SNE, T-SNE-Glove , Glove_Embedding
XLNET Word Embeddings with NLUxlnet, sentiment pos xlnet emotion[![Open In
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号