Project Icon

common_metrics_on_video_quality

多指标视频质量评估工具包

这是一个开源项目,提供了计算FVD、SSIM、LPIPS和PSNR等多种视频质量评估指标的工具包。支持灰度和RGB视频格式,适用于生成模型和预测模型的视频质量评估。项目在Ubuntu系统上运行稳定,并提供了详细的使用说明和注意事项。研究人员和开发者可以利用此工具包进行便捷的视频质量分析。

ffmpeg-quality-metrics - FFmpeg视频质量多指标评估工具
FFmpegGithubPSNRSSIMVMAF开源项目视频质量评估
FFmpeg Quality Metrics是一个开源的视频质量评估工具,支持PSNR、SSIM、VMAF和VIF等多种指标计算。它可输出逐帧指标、各平面/组件指标及全局统计数据。该工具跨平台兼容,支持Python 3.8+。通过命令行即可对视频进行质量评估,并提供多种可配置选项以满足不同评估需求。
FAST-VQA-and-FasterVQA - 开源高效视频质量评估框架
FAST-VQAFasterVQAGithub开源项目机器学习深度学习视频质量评估
FAST-VQA和FasterVQA是端到端视频质量评估的开源工具箱,提供高效的评估模型。FasterVQA作为FAST-VQA的改进版,在保持相似性能的同时速度提升4倍。这些模型在多个数据集上达到最先进水平。项目采用模块化架构,支持灵活的空间和时间采样方法及多种网络结构。研究者可进行模型训练、测试,并在小型数据集上微调。
VBench - 视频生成模型多维度质量评估套件
GithubPython包VBench基准套件开源项目视频生成模型评价
VBench项目提供一个全面的基准测试套件,专用于评估视频生成模型的多维质量。通过分层的评估维度,VBench可以细化并客观地评估视频生成质量的多个方面。套件包含详细的提示和评估方法,并提供人类偏好注释,确保结果与人类感知一致。用户可以选择对自定义视频或标准提示进行评估,以确保模型间的公平对比。
video-compare - 视频对比分析工具 支持多格式和交互控制
C++14FFmpegGithubSDL2video-compare开源项目视频比较工具
video-compare是一款分屏视频对比分析工具,基于C++14开发。该工具整合FFmpeg和SDL2库,实现交互式导航、播放控制和多种分析功能。它支持比较不同编解码器、调整算法等对视频的影响,可处理各种分辨率、帧率、扫描方式、颜色格式、容器格式的视频,还能对比图像或图像序列。工具提供可自定义的显示选项,方便用户进行深入的视频分析。
DOVER - 创新解耦视频质量评估方法
DOVERGithub开源项目深度学习用户生成内容美学和技术评估视频质量评估
DOVER是一种创新的视频质量评估方法,将审美和技术两个维度解耦,为用户生成内容提供全面评估。该方法从现有UGC-VQA数据集中分离这两个维度,并提供了包括轻量级DOVER-Mobile在内的多个版本。项目开源了代码、演示和权重,支持单视频和批量视频集评估,并提供了详细的安装使用说明。DOVER在多个基准数据集上取得了领先性能,为视频质量评估领域带来了新的研究方向。
stable-audio-metrics - 音频生成模型评估指标集合
GPU支持Githubstable-audio-metrics开源项目数据结构音频指标音频生成模型评估
stable-audio-metrics是一个评估音乐和音频生成模型的开源指标集合。它包含基于Openl3的Fréchet距离、基于PaSST的Kullback-Leibler散度和基于CLAP-LAION的CLAP分数。该项目针对长形式全频带立体声生成进行了优化,支持可变长度输入,并提供了详细文档和示例。适用于评估MusicCaps、AudioCaps和Song Describer等数据集的音频生成质量。
Awesome-Evaluation-of-Visual-Generation - 视觉生成评估方法全面汇总
Github图像生成开源项目生成模型视觉生成评估视频生成评估指标
该资源库汇集了视觉生成评估领域的各种方法。内容涵盖图像和视频生成模型评估、样本质量评估及用户控制一致性评估等多个方面。项目详细介绍了Inception Score、Fréchet Inception Distance等经典指标及最新评估方法。同时收录了视觉生成改进研究和其他相关资源,为该领域研究者提供全面参考。
IQA-PyTorch - 纯Python和PyTorch图像质量评估工具箱
GPU加速GithubIQAPyTorch图像质量评估开源项目纯Python
IQA-PyTorch是一款基于纯Python和PyTorch的图像质量评估工具箱,支持多种主流全参考和无参考评估指标。通过GPU加速,评估速度优于Matlab实现,用户可通过命令行或代码进行图像质量评估。该工具箱还支持作为损失函数使用,提供便捷的基准数据集下载和详细文档,适用于评估各种场景。定期更新及多种预训练模型让它成为图像质量评估的理想选择。详情请查阅文档和示例代码。
VideoPipe - 跨平台的视频分析和结构化解决方案
GithubVideoPipe开源项目深度学习行为分析视频分析视频结构化
VideoPipe 是一个用 C++ 编写的开源视频分析和结构化框架,依赖少且易于上手。适用于视频结构化、图片搜索、人脸识别、交通和安防领域的行为分析。支持多种视频流协议和解码方式,集成深度学习和传统图像算法,具备目标检测、图像分类、特征提取等功能。插件化设计允许根据需求灵活组合,适用于多种平台,性能优良,广泛适用于各类应用场景。
video_features - 多模态视频特征提取框架 支持多种深度学习模型
GitHub项目Github多模态分析开源项目深度学习模型视频特征提取计算机视觉
video_features是一个开源的视频特征提取框架,支持视觉、音频和光流等多种模态。该框架集成了S3D、R(2+1)d、I3D-Net等动作识别模型,VGGish声音识别模型,以及RAFT光流提取模型。它支持多GPU和多节点并行处理,可通过命令行或Colab快速使用。输出格式灵活,适用于视频分析相关的研究和应用。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号