Project Icon

filipino-wav2vec2-l-xls-r-300m-official

基于XLS-R的菲律宾语语音识别模型

这是一个针对菲律宾语的语音识别模型,通过在filipino_voice数据集上微调wav2vec2-xls-r-300m实现。经过30轮训练后,模型在测试集上达到了0.2922的词错误率,可用于菲律宾语音频识别任务。

wav2vec2-large-xlsr-53-persian - 基于XLSR-53微调的开源波斯语语音识别模型
Common VoiceGithubHuggingfaceWav2Vec2XLSR-53开源项目模型波斯语语音识别
该开源项目提供了一个基于XLSR-53的波斯语语音识别模型。通过在Common Voice数据集上微调,模型达到30.12%词错误率和7.37%字符错误率,超越同类方案。模型支持16kHz采样率语音直接识别,无需额外语言模型。项目包含完整使用指南和评估脚本,方便研究与应用。
wav2vec2-large-xlsr-53-telugu - 基于Wav2Vec2的泰卢固语语音识别模型
GithubHuggingfaceOpenSLR数据集Telugu语言Wav2Vec2开源项目模型自然语言处理语音识别
这是一个基于Wav2Vec2-Large-XLSR-53模型在OpenSLR SLR66泰卢固语数据集上微调的语音识别模型。模型在测试集上达到44.98%的词错误率(WER),可直接用于16kHz采样的泰卢固语语音识别。项目包含使用说明、评估方法和训练过程,为泰卢固语语音识别提供了一个开源解决方案。
wav2vec2-large-xls-r-300m-Urdu - 基于wav2vec2的乌尔都语语音识别模型
Common VoiceGithubHuggingfaceUrduwav2vec2开源项目模型模型微调语音识别
这是一个基于wav2vec2-xls-r-300m在Common Voice 8数据集上微调的乌尔都语语音识别模型。模型在测试集上达到39.89%的词错误率和16.7%的字符错误率。通过200轮训练,采用线性学习率调度和Adam优化器。模型支持简单的Python代码推理,并可与语言模型集成以提升性能。
wav2vec2-large-xlsr-53-japanese - 基于Wav2Vec2的日语语音识别模型
Common VoiceGithubHuggingfaceWav2Vec2XLSR-53开源项目日语模型语音识别
该模型是在facebook/wav2vec2-large-xlsr-53基础上,使用日语语音数据集微调而来的语音识别模型。在Common Voice日语测试集上,其词错误率(WER)为81.80%,字符错误率(CER)为20.16%,优于同类模型。它可直接用于日语语音转文本,无需额外语言模型。模型要求输入音频采样率为16kHz。
wav2vec2-base-960h - Facebook开发的高效语音识别模型
GithubHuggingfaceLibriSpeechWav2Vec2开源项目模型深度学习自然语言处理语音识别
wav2vec2-base-960h是Facebook开发的语音识别模型,基于960小时LibriSpeech数据集训练。在LibriSpeech clean/other测试集上,词错误率分别为3.4%和8.6%。模型可从原始音频学习表征,仅需1小时标记数据即可超越现有方法,展示了低资源语音识别的潜力。
wav2vec2-large-xlsr-53-italian - XLSR-53微调的开源意大利语语音识别模型
Common VoiceGithubHuggingfaceWav2Vec2XLSR-53开源项目意大利语模型语音识别
这是一个基于Facebook的wav2vec2-large-xlsr-53模型,在Common Voice 6.1意大利语数据集上微调的语音识别模型。模型在测试集上达到9.41%的词错误率和2.29%的字符错误率。支持直接处理16kHz采样的语音输入,无需额外语言模型。项目提供了详细的使用说明和评估脚本,便于研究人员快速应用和测试。
wav2vec2-large-xlsr-53-hungarian - 基于XLSR-53微调的匈牙利语语音识别模型
Common VoiceGithubHuggingfaceWav2Vec2XLSR-53匈牙利语开源项目模型语音识别
该模型基于wav2vec2-large-xlsr-53在匈牙利语语音数据上微调而来,在Common Voice测试集上实现31.40%的词错误率和6.20%的字符错误率,性能优于同类模型。支持16kHz采样率的语音输入,无需额外语言模型即可使用。开发者可通过HuggingSound库或自定义脚本轻松集成该模型,实现匈牙利语语音识别功能。
scenario-teacher-data-hate_speech_filipino-model-xlm-roberta-base - 优化后的模型用于菲律宾语的仇恨言论检测
GithubHuggingfacexlm-roberta-base仇恨言论准确率开源项目数据集模型训练过程
该项目利用xlm-roberta-base模型微调适用于菲律宾语的仇恨言论检测,已达到78.17%的准确率和76.87%的F1得分。模型特别适应于处理此类任务,通过调整学习率和其他超参数优化性能。训练使用了Adam优化和线性学习率调度策略,总计训练了6969个epoch。
wav2vec2-large-xlsr-53-dutch - XLSR-53模型在荷兰语语音识别上的应用与性能
Common VoiceGithubHuggingfaceWav2Vec2XLSR-53开源项目模型荷兰语语音识别
这是一个基于facebook/wav2vec2-large-xlsr-53模型,针对荷兰语语音识别任务进行微调的模型。通过使用Common Voice 6.1和CSS10数据集进行训练,该模型在Common Voice nl测试集上达到了15.72%的词错误率和5.35%的字符错误率。模型设计用于处理16kHz采样率的语音输入,可单独使用或与语言模型配合。项目详细说明了使用方法和评估流程,为荷兰语自动语音识别提供了一个有效的开源解决方案。
wav2vec2-lg-xlsr-en-speech-emotion-recognition - 微调Wav2Vec 2.0实现高精度语音情感识别
GithubHuggingfaceRAVDESS数据集Wav2Vec 2.0开源项目微调模型深度学习语音情感识别
项目利用微调技术优化wav2vec2-large-xlsr-53-english模型,在RAVDESS数据集上训练出准确率达82.23%的语音情感识别系统。该模型可辨别8种情感状态,包括愤怒、平静和厌恶等。这一成果为语音情感分析、人机交互和情感计算领域的研究提供了新的思路和实践参考。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号