Project Icon

Awesome-GNN4TS

时间序列分析中图神经网络的研究进展与应用

本项目汇集图神经网络(GNN)在时间序列分析领域的研究进展和资源,涵盖预测、分类、异常检测和插值等任务。内容包括相关论文、数据集和应用概述,以及面向任务和模型的GNN4TS分类方法,为该领域研究和应用提供参考。

Awesome Graph Neural Networks for Time Series Analysis (GNN4TS)

Awesome License: MIT


🔥 Abundant resources related to GNNs for time series analysis (GNN4TS) by Ming Jin, Huan Yee Koh, Qingsong Wen, Daniele Zambon, Cesare Alippi, Geoffrey I. Webb, Irwin King, Shirui Pan

🙋 Please let us know if you find out a mistake or have any suggestions!

🌟 If you find this resource helpful, please consider to star this repository and cite our survey paper:

@article{jin2024gnn4ts,
  title={A Survey on Graph Neural Networks for Time Series: Forecasting, Classification, Imputation, and Anomaly Detection},
  author={Jin, Ming and Koh, Huan Yee and Wen, Qingsong and Zambon, Daniele and Alippi, Cesare and Webb, Geoffrey I and King, Irwin and Pan, Shirui},
  journal={IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI)},
  year={2024}
}

Time series analysis is a fundamental task in many real-world applications, such as finance, healthcare, and transportation. Recently, graph neural networks (GNNs) have been widely used in time series analysis. This repository aims to collect the resources related to GNNs for time series analysis (GNN4TS).

时间序列分析是许多现实应用场景中的一项基本任务,例如对金融、医疗、和交通运输数据的分析与建模。近年来,图神经网络(GNN)已广泛应用于时间序列分析。本项目旨在收集整理与时间序列分析相关图神经网络(GNN4TS)的资源。

We provide two taxonomies for GNN4TS. The first taxonomy (left) is task-oriented and the second taxonomy (right) is model-oriented. The task-oriented taxonomy is based on the tasks that GNNs are used for in time series analysis. The model-oriented taxonomy is based on the types of GNNs used in time series analysis.

针对GNN4TS的大框架,我们提出了两种分类法:其一(左)是面向任务的,其次(右)是面向模型的。第一种分类法基于GNN在时间序列分析中施展的具体任务进行划分,第二种分类法则基于时间序列分析中GNN的类型与设计进行归纳。

✨ News

  • [2024-08-09] 🔥 Our survey was accepted by IEEE TPAMI (IF 20.8). 🎉
  • [2023-08-09] 📮 Our updated version (ver. 10 Aug) of the survey is released [paper link]
  • [2023-07-07] 📮 Our GNN4TS survey (ver. 11 Jul) is made available on arXiv [paper link]
  • [2023-06-19] 📮 We have released this repository that collects the resources related to GNNs for time series analysis (GNN4TS). We will keep updating this repository, and welcome to STAR🌟 and WATCH to keep track of it.

🔭 Table of Contents

📚 Collection of Papers

GNNs for Time Series Forecasting (GNN4TSF)

  • Diffusion convolutional recurrent neural network: Data-driven traffic forecasting (ICLR, 2018) [paper]
  • Spatio-temporal graph convolutional networks: A deep learning framework for traffic forecasting (IJCAI, 2018) [paper]
  • Urban traffic prediction from spatio-temporal data using deep meta learning (KDD, 2019) [paper]
  • Autoregressive Models for Sequences of Graphs (IEEE IJCNN, 2019) [paper]
  • ST-UNet: A Spatio-Temporal U-Network forGraph-structured Time Series Modeling (arXiv, 2019) [paper]
  • Dynamic Spatial-Temporal Graph Convolutional Neural Networks for Traffic Forecasting (AAAI, 2019) [paper]
  • Graph Attention Recurrent Neural Networks for Correlated Time Series Forecasting (MileTS, 2019) [paper]
  • Attention Based Spatial-Temporal Graph Convolutional Networksfor Traffic Flow Forecasting (AAAI, 2019) [paper]
  • Spatiotemporal Multi-Graph Convolution Network for Ride-hailing Demand Forecasting (AAAI, 2019) [paper]
  • Graph wavenet for deep spatial-temporal graph modeling (IJCAI, 2019) [paper]
  • STG2Seq: Spatial-Temporal Graph to Sequence Model for Multi-step Passenger Demand Forecasting (IJCAI, 2019) [paper]
  • Multi-Range Attentive Bicomponent Graph Convolutional Network for Traffic Forecasting (AAAI, 2020) [paper]
  • Connecting the Dots: Multivariate Time Series Forecasting with Graph Neural Networks (KDD, 2020) [paper]
  • Traffic Flow Prediction via Spatial Temporal Graph Neural Network (WWW, 2020) [paper]
  • Towards Fine-grained Flow Forecasting: A Graph Attention Approach for Bike Sharing Systems (WWW, 2020) [paper]
  • GMAN: A Graph Multi-Attention Network for Traffic Prediction (AAAI, 2020) [paper]
  • Spatial-Temporal Synchronous Graph Convolutional Networks: A New Framework for Spatial-Temporal Network Data Forecasting (AAAI, 2020) [paper]
  • Spatio-Temporal Graph Structure Learning for Traffic Forecasting (AAAI, 2020) [paper]
  • Spectral Temporal Graph Neural Network for Multivariate Time-series Forecasting (NeurIPS, 2020) [paper]
  • Adaptive Graph Convolutional Recurrent Network for Traffic Forecasting (NeurIPS, 2020) [paper]
  • GraphSleepNet: Adaptive Spatial-Temporal Graph Convolutional Networks for Sleep Stage Classification (IJCAI, 2020) [paper]
  • LSGCN: Long Short-Term Traffic Prediction with Graph Convolutional Networks (IJCAI, 2020) [paper]
  • ST-GRAT: A Novel Spatio-temporal Graph Attention Network for Accurately Forecasting Dynamically Changing Road Speed (CIKM, 2020) [paper]
  • Spatiotemporal Hypergraph Convolution Network for Stock Movement Forecasting (ICDM, 2020) [paper]
  • Forecaster: A Graph Transformer for Forecasting Spatial and Time-Dependent Data (ECAI, 2020) [paper]
  • Spatio-Temporal Graph Transformer Networks for Pedestrian Trajectory Prediction (ECCV, 2020) [paper]
  • Discrete Graph Structure Learning for Forecasting Multiple Time Series (ICLR, 2021) [paper]
  • MTHetGNN: A heterogeneous graph embedding framework for multivariate time series forecasting (Pattern Recognition, 2021) [paper]
  • Graph Edit Networks (ICLR, 2021) [paper]
  • Z-GCNETs: Time Zigzags at Graph Convolutional Networks for Time Series Forecasting (ICML, 2021) [paper]
  • Spatial-Temporal Graph ODE Networks for Traffic Flow Forecasting (KDD, 2021) [paper]
  • Spatial-Temporal Fusion Graph Neural Networks for Traffic Flow Forecasting (AAAI, 2021) [paper]
  • Hierarchical Graph Convolution Network for Traffic Forecasting (AAAI, 2021) [paper]
  • Traffic Flow Forecasting with Spatial-Temporal Graph Diffusion Network (AAAI, 2021) [paper]
  • TrafficStream: A Streaming Traffic Flow Forecasting Framework Based on Graph Neural Networks and Continual Learning (IJCAI, 2021) [paper]
  • DSTAGNN: Dynamic Spatial-Temporal Aware Graph Neural Network for Traffic Flow Forecasting (ICML, 2022) [paper]
  • Multivariate Time-Series Forecasting with Temporal Polynomial Graph Neural Networks (NeurIPS, 2022) [paper]
  • Domain Adversarial Spatial-Temporal Network: A Transferable Framework for Short-term Traffic Forecasting across Cities (CIKM, 2022) [paper]
  • Multivariate Time Series Forecasting with Dynamic Graph Neural ODEs (IEEE TKDE, 2022) [paper]
  • Graph Neural Controlled Differential Equations for Traffic Forecasting (AAAI, 2022) [paper]
  • CausalGNN: Causal-Based Graph Neural Networks for Spatio-Temporal Epidemic Forecasting (AAAI, 2022) [paper]
  • Auto-STGCN: Autonomous Spatial-Temporal Graph Convolutional Network Search (ACM TKDD, 2022) [paper]
  • TAMP-S2GCNets: Coupling Time-Aware Multipersistence Knowledge Representation with Spatio-Supra Graph Convolutional Networks for Time-Series Forecasting (ICLR, 2022) [paper]
  • Learning the Evolutionary and Multi-scale Graph Structure for Multivariate Time Series Forecasting (KDD, 2022) [paper]
  • Pre-training Enhanced Spatial-temporal Graph Neural Network for Multivariate Time Series Forecasting (KDD, 2022) [paper]
  • Mining Spatio-Temporal Relations via Self-Paced Graph Contrastive Learning (KDD, 2022) [paper]
  • Regularized Graph Structure Learning with Semantic Knowledge for Multi-variates Time-Series Forecasting (IJCAI, 2022) [paper]
  • Long-term Spatio-Temporal Forecasting via Dynamic Multiple-Graph Attention (IJCAI, 2022) [paper]
  • FOGS: First-Order Gradient Supervision with Learning-based Graph for Traffc Flow Forecasting (IJCAI, 2022) [paper]
  • METRO: A Generic Graph Neural Network Framework for Multivariate Time Series Forecasting (VLDB, 2022) [paper]
  • Scalable Spatiotemporal Graph Neural Networks (AAAI, 2023) [paper]
  • Graph State-Space Models (arXiv,
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号