Project Icon

pykan

实现了Kolmogorov-Arnold网络,提升神经网络准确性和可解释性

pykan项目实现了Kolmogorov-Arnold网络(KAN),这是一种在边缘应用激活函数的创新神经网络架构。KAN在多项任务中表现优于多层感知器(MLP),提高了模型准确性、参数效率和可解释性。项目提供详细教程和示例,涵盖从函数拟合到PDE求解的应用,为科学发现和数学定律探索开辟新途径。

torch-dreams - 神经网络可视化与解释性增强工具
GithubTorch-Dreams可解释性图像生成开源项目特征可视化神经网络
Torch-Dreams是一个Python库,专注于神经网络可视化和增强模型可解释性。它提供特征可视化、通道激活和多模型同步可视化等功能,支持批量处理和自定义变换。这个工具适合研究人员分析深度学习模型内部机制,也可用于生成艺术创作。
Hypernets - 自动机器学习通用框架 支持多种算法与优化技术
AutoMLGithubHypernets开源项目机器学习神经架构搜索超参数优化
Hypernets作为一个通用AutoML框架,能够为多种机器学习框架和库提供自动优化工具。它不仅支持TensorFlow、Keras、PyTorch等深度学习框架,还兼容scikit-learn、LightGBM、XGBoost等机器学习库。该框架集成了多种先进的单目标和多目标优化算法,并引入抽象搜索空间表示,满足超参数优化和神经架构搜索的需求,从而适应各类自动机器学习场景。
fann - 高性能开源神经网络库
FANNGithub开源库开源项目机器学习神经网络跨平台
FANN是一个用C语言实现的开源神经网络库,支持多层网络结构和多种连接方式。它具备跨平台兼容性、高性能计算能力和易用性,提供丰富的训练算法和激活函数。该库支持15种以上编程语言绑定,附带完整文档和图形界面,适用于研究和商业开发。FANN让用户能够便捷地构建、训练和部署神经网络模型。作为一个广受欢迎的项目,FANN日均下载量约100次,支持RPROP和Quickprop等多种训练方法,实现了多种激活函数,并可在固定点和浮点数系统上运行。其执行速度比类似库快达150倍,同时保持了良好的灵活性。FANN持续维护,为人工智能研究和应用提供了可靠的基础设施。
Automatic-Circuit-Discovery - 推进神经网络可解释性研究的自动化工具
ACDCGithub可解释性开源项目机器学习神经网络自动电路发现
Automatic Circuit DisCovery (ACDC)项目提供了一套自动化工具,用于探索神经网络内部机制,提高模型可解释性。项目包含NeurIPS 2023聚焦论文的配套代码,实现了ACDC算法、计算图编辑功能和可编辑计算图的底层实现。基于TransformerLens库开发,支持Python 3.8+环境,并提供完整的安装和使用文档。该工具为研究人员提供了深入分析神经网络内部结构的新方法。
kanata - 跨平台键盘自定义工具
Github多层功能开源软件开源项目自定义配置跨平台键盘映射
Kanata是一款开源的跨平台键盘自定义工具。它支持多层键功能、高级按键行为定制和易读的配置文件。用户可以创建自定义键盘层,优化工作流程,提高打字效率。Kanata具有实时配置重载功能,便于调试。此外,它还可以运行TCP服务器,实现与其他程序的交互。无论是普通用户还是开发者,都能通过Kanata提升键盘使用体验。
fklearn - 通过函数式编程简化机器学习问题的解决方案
Apache许可证Githubfklearnscikit-learn功能编程开源项目机器学习
fklearn基于函数式编程原则,旨在简化实际机器学习问题的解决。其核心原则包括:模型验证应反映真实情况、生产模型应与已验证模型一致、模型可快速投产,以及结果的可重复性和易于深入分析。用户可通过pip或源码安装fklearn,并可参考详尽文档和社区支持以快速入门。
NeuralNetworkRacing - 基于神经网络的2D自动驾驶模拟器
2D模拟Githubpyglet开源项目神经网络自动驾驶进化算法
NeuralNetworkRacing是一个使用Python开发的2D自动驾驶模拟项目。它结合神经网络和进化算法,训练虚拟汽车在生成的赛道上自主行驶。项目基于pyglet和numpy库实现,包含环境模拟、赛道生成等功能。通过配置文件,用户可以调整人口数量、突变率等参数。该开源项目为AI和自动驾驶领域提供了一个实验平台。
Learning-Scientific_Machine_Learning_Residual_Based_Attention_PINNs_DeepONets - 物理信息机器学习在科学计算中的应用与进展
DeepONetsGithubPIMLPINNsRBA开源项目物理信息机器学习
本项目聚焦物理信息神经网络(PINNs)、DeepONets和基于残差的注意力机制(RBA)等科学机器学习技术。内容涵盖从基础概念到高级应用的教程,包括函数逼近、ODE/PDE求解与发现等。项目呈现了PINNs领域的最新研究成果,尤其是RBA在提升性能方面的应用。这些资源对于物理信息机器学习领域的研究人员和工程师具有重要参考价值。
deepsnap - 高效灵活的图神经网络库 支持异构图和标准化流程
DeepSNAPGithubNetworkXPyTorch Geometric图深度学习开源项目异构图
DeepSNAP是一个专为图神经网络设计的Python库,连接NetworkX和PyTorch Geometric,提供灵活的图操作和标准化流程。它支持高效的图操作和转换、异构图处理,并提供数据集分割、负采样等功能。DeepSNAP的API易于使用,适用于节点分类、链接预测和图分类等多种图学习任务。
kandinsky-2-2-decoder - 基于CLIP和扩散技术的开源图像生成模型
CLIPGithubHuggingfaceKandinsky 2.2图像生成开源项目扩散模型文本到图像模型
Kandinsky 2.2采用CLIP和潜在扩散技术架构,结合Dall-E 2与Latent Diffusion的技术优势。模型具备文本生成图像、图像转换及图像插值等功能,支持生成1024x1024分辨率图像。在COCO_30k数据集评测中,模型FID评分达8.21。该项目完全开源,为图像生成领域提供了新的技术方案。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号