Project Icon

CLAP

音频与文本的对比学习预训练模型

CLAP是一个音频-文本对比学习预训练模型,可提取音频和文本的潜在表示。它基于CLIP架构设计,通过大规模预训练学习音频与文本的对应关系。该模型适用于音频分类、检索等多种下游任务。项目提供开源预训练模型、代码和PyPI库,支持从音频文件或数据中直接提取特征。

clap-htsat-fused - 对比语言与音频学习中的多任务性能提升
CLAPGithubHuggingface多模态表示学习对比学习开源项目模型零样本音频分类音频表示
CLAP项目使用对比语言-音频预训练模型结合音频编码器与文本编码器,提升多模态学习表现。该模型支持文本到音频检索、零样本音频分类及监督音频分类等多项任务。通过特征融合机制和关键词到字幕增强,CLAP能高效处理不同长度的音频输入。所发布的LAION-Audio-630K数据集及模型在文本到音频检索和零样本音频分类中表现优异,适用于零样本音频分类及音频、文本特征提取。
clap-htsat-unfused - CLAP音频-文本预训练模型实现零样本音频分类
CLAPGithubHuggingface多模态学习开源项目模型语音识别零样本分类音频嵌入
CLAP是一个基于对比学习的音频-文本预训练模型,利用LAION-Audio-630K数据集进行训练。该模型通过特征融合和关键词增强技术,能够处理不同长度的音频输入,在文本到音频检索、零样本音频分类等任务中表现优异。CLAP在零样本设置下达到了领先水平,可用于零样本音频分类或音频和文本特征提取。
larger_clap_music - 大规模音乐音频分类及特征提取的模型解决方案
CLAPGithubHuggingfaceRoBERTaTransformer开源项目模型神经网络音频分类
通过对比语言音频预训练技术,CLAP模型实现高效的音频和文本特征提取和分类,适用于无监督学习环境。模型兼具SWINTransformer和RoBERTa的优点,可用来评估音频与文本间的相似性,且能满足多种音频分类和嵌入需求。
larger_clap_music_and_speech - 专为音乐和语音优化的CLAP音频-文本对比学习模型
CLAPGithubHuggingface开源项目机器学习模型神经网络语音处理音频分类
larger_clap_music_and_speech是一个针对音乐和语音优化的CLAP模型。它结合SWINTransformer和RoBERTa处理音频和文本特征,实现潜在空间的特征映射。该模型支持零样本音频分类和特征提取,可在CPU和GPU上运行。作为音频理解和分析的有力工具,它在音乐识别和语音处理等领域具有广泛应用前景。
larger_clap_general - CLAP音频-文本预训练模型 实现零样本音频分类和特征提取
CLAPGithubHuggingface开源项目机器学习模型语音识别零样本分类音频处理
larger_clap_general是一个优化的CLAP(对比语言-音频预训练)模型,针对通用音频、音乐和语音进行训练。该模型结合SWINTransformer和RoBERTa分别处理音频和文本信息,适用于零样本音频分类和音频/文本特征提取。它能够在不针对特定任务优化的情况下,预测与给定音频最相关的文本描述,广泛应用于音频分类等多个领域。
open_clip - 探索前沿图像与语言对比预训练技术
GithubOpenCLIP图像识别对比学习开源项目零样本学习预训练模型
OpenCLIP是一个先进的开源深度学习项目,专注于OpenAI的CLIP模型的实现和优化。该项目在多样化的数据源和不同的计算预算下成功训练出多个高效能模型,涵盖图像和文本嵌入、模型微调及新模型开发等多个领域。通过增强图像与语言的联合理解能力,OpenCLIP显著推动了人工智能技术的发展,拓宽了其应用领域。
x-clip - 灵活实现的CLIP视觉语言预训练模型
CLIPGithub多模态对比学习开源项目深度学习视觉语言模型
x-clip是一个简洁而全面的CLIP实现,整合了多项前沿研究成果。该项目支持灵活的模型配置,包括自定义文本和图像编码器、多视图对比学习和视觉自监督学习等功能。通过易用的API,研究人员可以快速实验各种CLIP变体和改进方案。x-clip适用于图像检索、跨模态理解等多种视觉语言任务。
audio-dataset - LAION音频数据集收集与处理开源计划
CLAPGithubLAIONwebdataset开源项目音频数据集
LAION发起的Audio Dataset Project致力于收集和处理大规模音频-文本对数据集。项目团队由Mila和UCSD的研究人员及全球贡献者组成,专注于数据收集、标准化处理和webdataset格式存储。该项目为CLAP等模型训练提供数据支持,并设有完善的贡献指南和进度跟踪系统,欢迎更多贡献者参与。
OpenAI-CLIP - 从零开始实现CLIP模型:探索文本与图像的多模态关联
CLIPGithubOpenAI图像编码器多模态开源项目文本编码器
本项目实现了CLIP模型,基于PyTorch进行开发,通过训练文本和图像数据,探索其相互关系。详细的代码指南和实用工具展示了模型在自然语言监督任务中的表现和实际应用,适合多模态学习的研究者和开发者使用。
CLIP - CLIP是一种在各种(图像、文本)对上训练的神经网络
CLIPGithubPyTorch图像识别开源项目模型训练自然语言处理
CLIP通过对比学习训练神经网络,结合图像和文本,实现自然语言指令预测。其在ImageNet零样本测试中的表现与ResNet50相当,无需使用原始标注数据。安装便捷,支持多种API,适用于零样本预测和线性探针评估,推动计算机视觉领域发展。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号