Project Icon

XLM-Roberta-Large-Vit-B-16Plus

支持50多种语言的多模态视觉语言模型

XLM-Roberta-Large-Vit-B-16Plus是一个多语言视觉语言模型,扩展了CLIP模型至50多种语言。该模型包含多语言文本编码器,可与Vit-B-16Plus图像编码器协同工作。在多语言MS-COCO数据集的文本-图像检索任务中,它在11种语言中均表现出色。模型能够从多语言文本和图像中提取特征向量,适用于跨语言的图像文本匹配应用。

Chinese-CLIP - 中文多模态嵌入和检索性能优化的领先方案
Chinese-CLIPGithub图文特征提取开源项目模型下载跨模态检索零样本图像分类
Chinese-CLIP项目,基于大规模中文图文对数据,专门针对中文领域的特点进行优化,提供高效的图文特征计算与相似度测算,实现零样本分类和跨模态检索。该项目改进了多个模型,包括ViT与ResNet结构,并在多个公开数据集上展示了显著的性能提升,为中文处理场景下的企业和研究者提供强大工具。
all-roberta-large-v1 - 基于RoBERTa的大规模句子嵌入模型
GithubHuggingfacesentence-transformers向量嵌入开源项目机器学习模型自然语言处理语义相似度
all-roberta-large-v1是一个基于RoBERTa架构的sentence-transformers模型,可将文本映射到1024维向量空间。该模型在超10亿句对数据集上进行微调,能有效捕捉语义信息,适用于聚类、语义搜索等任务。模型可通过sentence-transformers或Hugging Face Transformers库便捷使用,为自然语言处理提供高质量的句子表示。
DFN5B-CLIP-ViT-H-14-378 - 大规模数据筛选优化的视觉语言预训练系统
CLIPGithubHuggingface图像分类开源项目数据过滤网络机器学习模型计算机视觉
DFN5B-CLIP-ViT-H-14-378是一款基于CLIP架构的视觉语言模型,采用数据过滤网络(DFN)技术从43B未筛选的图像-文本对中提取5B高质量数据进行训练。该模型在多项视觉任务中表现优异,平均准确率达70.94%。支持零样本图像分类,可与OpenCLIP框架无缝集成,为计算机视觉和自然语言处理研究提供了高性能的预训练模型基础。
blip2-flan-t5-xxl - 整合CLIP和Flan T5的多模态模型实现图像理解与语言生成
BLIP-2GithubHuggingface图像处理图像标注开源项目模型视觉问答语言模型
BLIP2-FLAN-T5-XXL是一个集成CLIP图像编码器、查询转换器和Flan T5-xxl语言模型的多模态系统。通过查询转换架构连接图像特征和语言理解,实现图像描述生成、视觉问答和基于图像的对话功能。模型支持CPU/GPU部署,提供float16、int8等多种精度配置选项。目前主要应用于图像理解和自然语言生成的研究领域。
InternVL2-8B - 多模态大语言模型在图像理解、视频分析和目标定位方面的全面能力
GithubHuggingfaceInternVL2多模态大语言模型开源项目指令微调推理性能模型视觉语言模型
InternVL2-8B是一个基于InternViT-300M-448px和internlm2_5-7b-chat的多模态大语言模型。该模型在文档理解、图表分析和场景文本识别等图像任务中表现优异,同时在视频理解和目标定位方面也展现出强大能力。支持8k上下文窗口,能够处理长文本、多图像和视频输入,在开源多模态模型中具有竞争力。
multilingual-MiniLMv2-L6-mnli-xnli - 轻量级多语言自然语言推理与分类模型
GithubHuggingfaceMiniLMv2多语言翻译开源项目机器学习模型自然语言推理零样本分类
MiniLMv2是一款支持100多种语言的自然语言推理模型,采用知识蒸馏技术从XLM-RoBERTa-large模型优化而来。经过XNLI和MNLI数据集的微调训练,该模型在XNLI测试集达到71.3%的平均准确率。相比原始模型,具备更低的资源消耗和更快的运行速度,适合跨语言迁移学习应用。
vip-llava-7b-hf - 基于自然视觉提示的多模态语言模型
AI聊天机器人GithubHuggingfaceViP-LLaVA图像识别多模态AI开源项目模型视觉语言处理
VipLLaVA在LLaVA基础上引入自然视觉提示训练机制,通过边界框和指向箭头等视觉标记增强模型的图像理解能力。作为基于Transformer架构的多模态模型,VipLLaVA支持多图像输入和复杂视觉查询处理。该模型通过微调LLaMA/Vicuna实现,可集成到transformers库中实现图像文本交互,并支持4位量化和Flash Attention 2优化部署。
Llama-3.2-11B-Vision - Meta开发的多模态大语言模型 支持视觉识别和图像推理
GithubHuggingfaceLLAMA 3.2多模态模型开源项目机器学习模型自然语言处理计算机视觉
Llama-3.2-11B-Vision是Meta开发的多模态大语言模型,支持图像和文本输入、文本输出。该模型在视觉识别、图像推理、图像描述和通用图像问答方面表现出色。它基于Llama 3.1文本模型构建,采用优化的Transformer架构,通过监督微调和人类反馈强化学习进行对齐。模型支持128K上下文长度,经过60亿(图像,文本)对训练,知识截止到2023年12月。Llama-3.2-11B-Vision为商业和研究用途提供视觉语言处理能力。
chinese-clip-vit-huge-patch14 - 基于ViT-H/14和RoBERTa的中文图文对比学习模型
Chinese-CLIPGithubHuggingface中文数据集图像编码器开源项目文本编码器检索模型
chinese-clip-vit-huge-patch14是一个基于ViT-H/14和RoBERTa-wwm-large的中文CLIP模型,在大规模中文图文数据上训练,表现卓越。支持在MUGE、Flickr30K-CN和COCO-CN等数据集中的图文检索和零样本分类。提供API实现简便的图文特征提取及相似度计算,详情请参见GitHub仓库。
ViT-SO400M-14-SigLIP-384 - 采用SigLIP技术的大规模视觉-语言预训练模型
GithubHuggingfaceSigLIPViT-SO400M-14WebLI图像文本对比开源项目模型零样本图像分类
ViT-SO400M-14-SigLIP-384是一个在WebLI数据集上训练的大规模视觉-语言预训练模型。该模型采用SigLIP(Sigmoid Loss for Language-Image Pre-training)技术,适用于对比学习和零样本图像分类任务。模型提供了与OpenCLIP和timm库的兼容性,支持图像和文本编码。研究人员可将其应用于图像分类、检索等多种视觉-语言任务中。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号