Project Icon

videomae-large

视频自监督学习的高效模型

VideoMAE大型模型在Kinetics-400数据集上进行自监督预训练,采用掩码自编码器方法,有效学习视频的内在表示。利用视觉Transformer架构,通过将视频划分为固定大小的图像块,结合线性嵌入和位置编码,进行深度分析和像素预测,适用于多种后续任务和特征提取,包括视频分类和处理。

LaVIT - 大语言模型理解生成视觉内容的统一框架
GithubLaVIT多模态大语言模型开源项目视觉内容理解视觉内容生成预训练策略
LaVIT项目是一个创新的多模态预训练框架,旨在增强大语言模型处理视觉内容的能力。该项目通过动态离散视觉标记化技术,将图像和视频转换为离散标记序列,使大语言模型能够理解和生成视觉内容。LaVIT支持图像和视频的理解、生成,以及多模态提示生成,为计算机视觉和自然语言处理的融合提供了新的可能性。
video2dataset - 快速构建大规模视频数据集的开源工具
Githubvideo2dataset分布式处理开源项目数据预处理视频下载视频数据集
video2dataset是一个开源工具,用于从视频URL快速创建大规模视频数据集。它支持多种输入输出格式和文件系统,可在12小时内处理1000万个视频。该工具提供增量模式、分布式处理和Weights & Biases集成,适合机器学习训练等场景。其灵活的API和配置选项让用户能够精细控制数据处理流程。
TinyCLIP-ViT-8M-16-Text-3M-YFCC15M - 高效压缩CLIP模型的跨模态蒸馏方法
CLIPGithubHuggingfaceTinyCLIP图像分类开源项目模型视觉语言预训练跨模态蒸馏
TinyCLIP是一种创新的跨模态蒸馏方法,专门用于压缩大规模语言-图像预训练模型。该方法通过亲和力模仿和权重继承两项核心技术,有效利用大规模模型和预训练数据的优势。TinyCLIP在保持comparable零样本性能的同时,显著减少了模型参数,实现了速度和精度的最佳平衡。这一技术为高效部署CLIP模型提供了实用解决方案,在计算资源受限的场景下尤其有价值。
FAST-VQA-and-FasterVQA - 开源高效视频质量评估框架
FAST-VQAFasterVQAGithub开源项目机器学习深度学习视频质量评估
FAST-VQA和FasterVQA是端到端视频质量评估的开源工具箱,提供高效的评估模型。FasterVQA作为FAST-VQA的改进版,在保持相似性能的同时速度提升4倍。这些模型在多个数据集上达到最先进水平。项目采用模块化架构,支持灵活的空间和时间采样方法及多种网络结构。研究者可进行模型训练、测试,并在小型数据集上微调。
VideoElevator - 融合文本到图像技术提升AI视频生成质量
GithubVideoElevator开源项目扩散模型文本到图像文本到视频视频生成
VideoElevator是一个开源的AI视频生成项目,通过结合文本到图像和文本到视频的扩散模型来提升生成视频的质量。该项目采用免训练、即插即用的方法,将视频生成过程分为时间运动细化和空间质量提升两个阶段。VideoElevator能在11GB以下显存的GPU上运行,支持多种扩散模型的协作,为高质量AI视频生成提供了新的解决方案。
metaclip-h14-fullcc2.5b - 大规模视觉语言模型基于25亿CommonCrawl数据训练
GithubHuggingfaceMetaCLIP多模态学习开源项目模型自然语言处理计算机视觉零样本分类
MetaCLIP是一个基于25亿CommonCrawl数据点训练的大规模视觉语言模型。该模型由Xu等人在《Demystifying CLIP Data》论文中提出,旨在解析CLIP的数据准备流程。MetaCLIP支持图像与文本的联合嵌入,可应用于零样本图像分类、文本图像检索等任务。作为一个开源项目,MetaCLIP为研究人员提供了探索大规模视觉语言模型的新方向,有助于推进计算机视觉和自然语言处理领域的发展。
StableVideo - 通过文本驱动实现一致性扩散的视频编辑技术
GithubHuggingFaceStableVideodiffusion开源项目文本驱动视频编辑
StableVideo 通过采用最新的文本驱动一致性扩散算法,提供了创新的视频编辑技术。用户可以下载预训练模型和示例视频,用于视频帧的编辑和渲染。该工具支持多种配置,提供详细的安装和运行指南,便于在本地进行实验。借助 ControlNet 和 Text2LIVE 等开源资源,StableVideo 展示了其在视频处理领域的强大应用潜力。如果该项目对研究有帮助,请参考相关学术论文。
EVA - 推进大规模视觉表示学习的前沿
CLIPEVAGithub多模态学习开源项目自监督学习视觉表示
EVA是北京智源人工智能研究院开发的视觉表示学习模型系列。它包括多个子项目,如EVA-01和EVA-CLIP,致力于探索大规模掩码视觉表示学习的极限和改进CLIP训练技术。这些模型在主流平台上提供,为计算机视觉研究提供了有力支持。EVA项目涵盖基础模型、自监督学习和多模态学习等前沿领域。
VLM2Vec-Full - 视觉语言模型VLM2Vec的多模态嵌入训练方法
GithubHuggingfaceTIGER-LabVLM2Vec多模态嵌入对比学习开源项目模型视觉语言模型
VLM2Vec在Phi-3.5-V模型中引入EOS标记,实现跨多模态输入的统一嵌入表达,高效结合文本与图像。通过对比学习在MMEB-train数据集上训练,并在36个数据集上进行评估,Lora训练方式表现最佳。项目提供模型检查点及完整训练记录,供用户在GitHub仓库克隆下载,通过代码实现文本与图像的嵌入和相似度计算,助力模型运用。
MDT - MDTv2图像合成模型:更快收敛和卓越性能
GithubMasked Diffusion Transformer人工智能图像合成开源项目深度学习计算机视觉
MDTv2是一种先进的深度学习图像合成模型,在ImageNet数据集上实现了1.58的FID分数,创造新的业界标准。该模型采用掩码潜在建模技术,提高了图像语义理解能力,学习速度比先前模型快10倍以上。MDTv2在图像生成质量和训练效率方面都有显著提升,为计算机视觉和人工智能领域带来了新的可能性。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号