Project Icon

EZO-gemma-2-2b-jpn-it-GGUF

GGUF格式优化的日语Gemma模型

EZO-gemma-2-2b-jpn-it-GGUF项目将AXCXEPT的日语Gemma模型转换为GGUF格式,提高了模型效率。项目采用K量子化技术,并利用TFMC提供的iMatrix数据集增强日语处理能力。这些优化使得模型在保持高性能的同时更加轻量化,适合需要高效日语语言模型的应用场景。

tokyotech-llm-Llama-3.1-Swallow-8B-Instruct-v0.1-gguf - 基于Llama 3.1的日英双语指令模型GGUF版本 支持高效本地部署
GithubHuggingfaceLlama-3.1人工智能开源项目日语模型机器学习模型语言模型
该项目是tokyotech-llm团队开发的Llama-3.1-Swallow-8B-Instruct模型的GGUF格式版本。原模型基于Llama 3.1架构,使用imatrix日语数据集训练,支持日英双语交互。GGUF格式优化了模型的本地部署效率,特别适合在llama.cpp框架下运行。模型可用于日语对话、任务执行等多种场景,具有良好的指令理解能力。
CodeLlama-7B-GGUF - 采用GGUF格式的CodeLlama 7B模型提高编码效率与多平台兼容性
CodeLlamaGithubHuggingfaceLLMMeta代码生成开源项目模型模型量化
该项目展示了Meta的CodeLlama 7B模型在GGUF格式中的优势,取代不再支持的GGML格式。GGUF提供了更好的标记和特别符号支持,并具有元数据和扩展性。适用于多种第三方客户端和库,如llama.cpp和text-generation-webui。量化模型可满足不同计算需求,实现CPU+GPU推理的最佳性能,适配多种平台,为高性能编码需求提供多样化解决方案。
Llama-3.2-1B-Instruct-GGUF - 高效量化的指令微调语言模型GGUF版本
GGUFGithubHuggingfaceLlama大语言模型开源项目文本生成模型量化
该项目提供Llama-3.2-1B-Instruct模型的GGUF格式量化版本,支持2至8位量化。GGUF是llama.cpp团队推出的新格式,取代了旧有的GGML。这一版本兼容多种支持GGUF的工具和库,如llama.cpp、LM Studio等,便于高效本地部署和推理。对于需要在资源受限环境中使用大型语言模型的开发者来说,此项目提供了实用的解决方案。
gemma-2-2b-bnb-4bit - Gemma模型4bit量化实现提速降耗的AI推理优化
GemmaGithubHuggingfaceLlamaUnsloth开源项目机器学习模型模型微调
该项目对Gemma-2-2b模型进行4bit量化优化,通过bitsandbytes技术实现高效压缩。在Google Colab环境下可实现2倍以上推理速度提升,同时节省60%以上内存占用。项目提供完整的模型微调支持,可帮助开发者在有限算力条件下高效部署语言模型。
OpenHermes-2.5-Mistral-7B-GGUF - 高效推理的新型模型文件格式
GithubHuggingfaceOpenHermes-2.5-Mistral-7B下载指南开源项目模型模型兼容性量化量化方法
GGUF是一种由llama.cpp团队于2023年8月引入的新型模型文件格式,旨在取代GGML,不再受其支持。该格式兼容众多第三方用户界面及库,例如llama.cpp、text-generation-webui和KoboldCpp等平台,这些平台支持GPU加速,从而提高文本生成任务的效率。Teknium的OpenHermes 2.5 Mistral 7B模型在此格式下得以量化处理,通过多种量化方法平衡模型文件大小与推理质量,适用于包括CPU+GPU推理在内的多种场景。用户在多种设备和平台上使用该格式能获取所需模型,并通过Massed Compute的硬件支持获得性能优化。
Gemmasutra-Mini-2B-v1-GGUF - 小型2B模型实现高效本地语言处理
Gemmasutra Mini 2BGithubHuggingface开源项目本地LLM模型精细调整角色扮演
Gemmasutra Mini 2B v1是一款具备本地化处理能力的小型语言模型,适用于多种设备,包括普通笔记本和树莓派。其自由和无对齐特性,提供了个性化体验,推荐使用Gemma Instruct模板进行系统角色调整使用,但不适合数学应用。
llama3-8B-DarkIdol-2.2-Uncensored-1048K-GGUF - 多语言支持的llama3-8B GGUF量化模型,提供多级压缩优化
GGUFGithubHuggingfacellama3大语言模型开源项目权重压缩模型量化模型
llama3-8B GGUF量化模型支持英语、日语和中文,提供3.3GB至16.2GB多种压缩版本,适应不同硬件需求。Q4_K系列在性能和质量上表现均衡。模型基于transformers库开发,适用于角色扮演和偶像相关场景。用户可通过Hugging Face平台获取各版本及其性能对比信息。
gemma-2-9b-it-function-calling-GGUF - 精确优化与功能调用的对话生成应用
GithubHuggingfacegemma-2-9b-it人机对话函数调用开源项目文本生成模型模型微调
该项目对google/gemma-2-9b-it模型进行细致调优以处理函数调用任务,专注于提高对话生成的灵活性和功能集成。数据集采用DiTy/function-calling且为人类注释,为确保高质量结果输出,支持safetensors和GGUF格式,适用于各种应用场景。模型版本提供多种量化类型,从F16基础格式到Q6_K,适合高效精确实现函数调用的需求。
mini-magnum-12b-v1.1-iMat-GGUF - 基于mini-magnum的量化优化大语言模型
GGUFGithubHuggingfacellama.cppmini-magnum-12b大语言模型开源项目模型量化
mini-magnum-12b-v1.1模型的量化优化版本,采用iMatrix技术和fp16 GGUF进行量化处理。经验证可在llama.cpp、text-generation-web-ui等主流平台稳定运行,支持Flash Attention加速,并提供多种优化配置方案。项目包含详细的性能对比数据和部署指南,方便开发者快速上手使用。
CodeLlama-13B-GGUF - GGUF格式的创新特点与适用范围
CodeLlama 13BGithubHuggingfaceMeta开源项目机器学习模型模型格式量化
Meta推出的GGUF格式替代了GGML,优化了编码生成的效能和兼容性。它增强了标记处理和元数据支持,并适用于多种程序和库,如llama.cpp和text-generation-webui。这种格式推动了编码模型的发展,提供了便于GPU加速和降低内存需求的量化模型,提升了开发者的灵活性和解决方案质量。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号