Project Icon

CONCH

病理学视觉语言模型提升多任务性能

CONCH是为病理学量身打造的视觉语言模型,通过对比学习提高图像与文本检索能力。该模型在117万对图像描述数据集上预训练,可在多个任务中表现优异,包括图像分类、文本-图像检索、图像字幕生成和组织切割。CONCH的优势在于除H&E染色图像外,还在IHC及特殊染色图像上显示出色性能,为病理AI模型的开发与评估提供广泛应用选择。

CLIP-convnext_large_d_320.laion2B-s29B-b131K-ft-soup - ConvNeXt-Large CLIP模型提升零样本图像分类性能
CLIPConvNeXtGithubHuggingface图像分类开源项目机器学习模型零样本学习
本模型基于LAION-2B数据集训练,采用320x320分辨率的ConvNeXt-Large架构和权重平均技术。在ImageNet-1k零样本分类任务上,准确率达到76.9%,超越了256x256分辨率版本。模型效率高于OpenAI的L/14-336,可应用于零样本图像分类、图文检索等任务。该项目为研究人员提供了强大的视觉-语言表征工具,助力探索大规模多模态模型。
CLIP-convnext_xxlarge-laion2B-s34B-b82K-augreg - 基于LAION-2B数据集的卷积神经网络达到79%零样本分类准确率
CLIPConvNextGithubHuggingface图像分类开源项目机器学习模型神经网络
CLIP ConvNeXt-XXLarge是一个在LAION-2B数据集上训练的大规模视觉语言模型,总参数量12亿,图像分辨率256x256。模型采用ConvNeXt-XXLarge图像结构和ViT-H-14规模的文本编码器,在ImageNet零样本分类上达到79%准确率。主要应用于图像分类、检索等研究任务。
LViT - 结合语言和视觉Transformer的医学图像分割技术
GithubLViTVision Transformer医学图像分割开源项目数据集深度学习
LViT是一种创新的医学图像分割方法,融合了语言信息和视觉Transformer。该技术在QaTa-COV19、MosMedData+和MoNuSeg等多个数据集上展现出优异性能,大幅提升了分割精度。项目包含完整代码实现、数据准备指南、训练评估流程及详细实验结果。除常规任务外,LViT在结肠息肉和食管CT等特定领域分割中也表现出色。
conformer - 结合卷积神经网络和Transformers的语音识别模型
ConformerGithubPyTorchTransformer卷积神经网络开源项目语音识别
Conformer模型结合卷积神经网络和Transformers,能同时捕捉音频的局部和全局依赖关系,提高语音识别精度并节省参数。本项目提供该模型的PyTorch实现,包含详细的安装和使用指南,适用于Python 3.7及更高版本。
Chinese-CLIP - 中文多模态嵌入和检索性能优化的领先方案
Chinese-CLIPGithub图文特征提取开源项目模型下载跨模态检索零样本图像分类
Chinese-CLIP项目,基于大规模中文图文对数据,专门针对中文领域的特点进行优化,提供高效的图文特征计算与相似度测算,实现零样本分类和跨模态检索。该项目改进了多个模型,包括ViT与ResNet结构,并在多个公开数据集上展示了显著的性能提升,为中文处理场景下的企业和研究者提供强大工具。
MobileCLIP-S2-OpenCLIP - 高效图像-文本模型通过多模态强化训练实现性能突破
GithubHuggingfaceMobileCLIPOpenCLIP图像文本模型多模态强化训练开源项目模型零样本图像分类
MobileCLIP-S2-OpenCLIP是一款基于多模态强化训练的高效图像-文本模型。相比SigLIP的ViT-B/16模型,它在性能上有所超越,同时速度提升2.3倍,模型体积缩小2.1倍,且仅使用了1/3的训练样本。在ImageNet零样本分类任务中,该模型达到74.4%的Top-1准确率,在38个数据集上的平均性能为63.7%,体现了出色的效率与性能平衡。
chinese-clip-vit-base-patch16 - 中文数据驱动的多模态对比学习工具
Chinese-CLIPGithubHuggingface图像识别多模态检索开源项目模型深度学习零样本学习
项目通过ViT和RoBERTa实现了中文CLIP模型,支持图像和文本的嵌入计算及相似性分析,具备零样本学习和图文检索功能。该模型在多项基准测试中表现优秀,包括MUGE、Flickr30K-CN等。结合其官方API,用户可轻松实现多场景中的图文转换与识别。详细信息和实施教程可在GitHub获取。
git-large-coco - 高级视觉与语言转换:大规模图像到文本模型
GITGithubHuggingface图像标注开源项目模型模型训练视觉视觉问答
GIT大型模型通过在COCO数据集上微调,实现图像到文本的转换,支持图像和视频字幕生成、视觉问答和图像分类等功能。该模型利用图像和文本令牌的结合,预测下一个文本令牌,并在多种视觉与语言应用场景中表现出色。
clap-htsat-fused - 对比语言与音频学习中的多任务性能提升
CLAPGithubHuggingface多模态表示学习对比学习开源项目模型零样本音频分类音频表示
CLAP项目使用对比语言-音频预训练模型结合音频编码器与文本编码器,提升多模态学习表现。该模型支持文本到音频检索、零样本音频分类及监督音频分类等多项任务。通过特征融合机制和关键词到字幕增强,CLAP能高效处理不同长度的音频输入。所发布的LAION-Audio-630K数据集及模型在文本到音频检索和零样本音频分类中表现优异,适用于零样本音频分类及音频、文本特征提取。
phikon - 基于ViT的组织病理学自监督学习模型
GithubHuggingfacePhikon医学图像处理开源项目模型深度学习肿瘤病理学自监督学习
Phikon是一个使用iBOT训练的组织病理学自监督学习模型。它是由Owkin开发的Vision Transformer Base模型,包含8580万个参数,支持224x224x3的图像输入。该模型在4000万个泛癌症图像块上进行了预训练,可用于从组织学图像中提取特征,并应用于多种癌症亚型的分类任务。通过微调,Phikon可以适应特定癌症亚型的研究需求。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号