Project Icon

deberta-v3-large-zeroshot-v2.0

DeBERTa-v3-large基于自然语言推理的零样本分类模型

deberta-v3-large-zeroshot-v2.0是基于DeBERTa-v3-large的零样本分类模型,通过自然语言推理任务训练。无需训练数据即可执行多种文本分类任务,适用于GPU和CPU。在28个分类任务上表现优异,支持灵活的假设模板。模型提供高效通用的分类能力,适用于商业和学术场景,是一个强大的零样本分类工具。

BERTweet - 专为英语推文预训练的大规模语言模型,助力自然语言处理
BERTweetCOVID-19GithubRoBERTa开源项目英文推文语言模型
BERTweet是首个专为英语推文预训练的公共语言模型,基于RoBERTa预训练程序,使用850M条推文数据进行训练,包含普通推文和疫情相关推文。BERTweet提供多种预训练模型,能够无缝集成于transformers和fairseq框架,支持情感分析、命名实体识别等自然语言处理任务,为研究和应用提供有力支持。
Chinese-CLIP - 中文多模态嵌入和检索性能优化的领先方案
Chinese-CLIPGithub图文特征提取开源项目模型下载跨模态检索零样本图像分类
Chinese-CLIP项目,基于大规模中文图文对数据,专门针对中文领域的特点进行优化,提供高效的图文特征计算与相似度测算,实现零样本分类和跨模态检索。该项目改进了多个模型,包括ViT与ResNet结构,并在多个公开数据集上展示了显著的性能提升,为中文处理场景下的企业和研究者提供强大工具。
beto - 西班牙语BERT模型:BETO
BERTBETOGithub开源项目模型西班牙语语料库
此页面介绍了一个基于大型西班牙语语料库训练的BERT模型BETO,提供无区分大小写和区分大小写的Tensorflow和Pytorch版本。BETO应用全词掩蔽技术,在多项西班牙语基准测试中表现优异,并与多语言BERT及其他模型进行了对比。用户可以在HuggingFace Model Repository下载BETO模型,并通过HuggingFace Transformers库轻松使用。此外,页面还包含示例代码和引用信息。
setfit - SetFit高效小样本学习框架,支持多语言文本分类
GithubHugging Face HubSetFit多语言支持少量标签数据开源项目无需提示
SetFit是一种高效且无需提示的小样本微调框架,利用Sentence Transformers实现高准确度的小样本学习。不需要手工制作提示或语言模型转换器,直接从文本示例生成丰富嵌入,大大提高训练速度。在仅有少量标记数据的情况下,SetFit的精度可与大型模型相媲美。例如,针对客户评论情感数据集,仅使用每类8个标记样本就能达到RoBERTa Large的全量训练精度。支持多语言文本分类,兼容Hugging Face Hub,训练和推理过程简单直观,是一个高效实用的选择。
LoRA - 大型语言模型的低秩适配方法与参数节省
DeBERTaGLUEGPT-2GithubLoRARoBERTa开源项目
LoRA通过低秩分解矩阵实现大型语言模型的低秩适配,减少了训练参数数量,实现高效的任务切换和存储节省。它在GLUE基准测试中的表现与完全微调相当或更好,同时显著降低了参数需求。LoRA支持RoBERTa、DeBERTa和GPT-2等模型,并已集成到Hugging Face的PEFT库中,提供了便捷的适配解决方案。
ZeroEval - 统一评估框架测试语言模型零样本推理
AI框架GithubZeroEval任务性能开源项目语言模型评估零样本学习
ZeroEval是一个评估语言模型零样本推理能力的统一框架。它通过控制提示、采样和输出解析等因素,在MMLU、GSM等任务上测试指令微调模型的性能。该框架要求模型以JSON格式输出推理过程和答案,并持续扩展评估任务范围。
text2vec - 多模型文本向量化工具,支持多语言文本匹配分析
BERTGithubText2vec开源项目文本向量化文本相似度模型训练
text2vec工具实现了多种文本向量表示和相似度计算模型,如Word2Vec、BERT、Sentence-BERT和CoSENT。最新版本增加了多卡推理和命令行工具,方便用户批量处理文本向量化。它在中英文测试集上的表现优秀,尤其新版中文匹配模型在短文本区分上有显著提升。该工具为中文和多语言文本匹配提供了丰富的支持,能够满足各种文本语义分析任务的需求。
text-embeddings-inference - 快速上手Ai理论及应用实战
API文档BERTDockerGithubtext-embeddings-inference开源项目模型部署
Text Embeddings Inference 为文本嵌入模型提供高效的推理服务,支持多种模型配置,适合AI及深度学习需求。快速部署和卓越的服务器级性能使其成为企业和研究机构面对大规模文本处理和复杂查询时的理想选择,支持包括 [BERT](https://link-to-bert) 和 [RoBERTa](https://link-to-roberta) 在内的多种模型,并兼容 Docker 和完备的 API 文档。
delft - 基于Keras和TensorFlow的深度学习文本处理框架
DeLFTGithubKerasTensorFlow开源项目文本处理深度学习
DeLFT是一个Keras和TensorFlow框架,专为序列标注(如命名实体识别、信息提取)和文本分类(如评论分类)优化。它重新实现了许多前沿深度学习模型,支持处理富文本格式和多种现代NLP架构,旨在提供高效、可靠且可集成的生产级应用。该框架包括各种分类器和评估标准,并支持多GPU训练和推理。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号