Project Icon

UNetPlusPlus

嵌套U-Net架构优化医学图像分割

UNet++是一种改进的医学图像分割架构,通过重新设计跳跃连接和密集连接解码器,解决了U-Net的架构深度和连接设计问题。项目提供Keras和PyTorch实现,并获得多个第三方支持。UNet++在医学图像分割任务中表现优异,为研究提供了有力工具。该项目已在GitHub开源,欢迎研究者使用和贡献。

LibtorchSegmentation - 高性能C++图像分割库
C++库GithubLibTorch图像分割开源项目神经网络预训练模型
LibtorchSegmentation是基于LibTorch的C++图像分割库,提供高级API和多种模型架构。支持15种预训练编码器,推理速度比PyTorch CUDA快35%。该库简单易用yet功能强大,适合快速开发和部署各类图像分割应用。
fbrs_interactive_segmentation - 基于反向传播细化的交互式图像分割算法
GithubPyTorchf-BRS交互式分割开源项目深度学习计算机视觉
f-BRS是一种基于反向传播细化的交互式图像分割算法。该项目提供了PyTorch实现,支持ResNet和HRNet等多种骨干网络。算法通过用户点击交互实现精确对象分割,在GrabCut、Berkeley等多个数据集上进行了评估。项目还提供了图形界面演示。f-BRS在分割精度和速度方面均有显著提升,为计算机视觉领域提供了新的解决方案。
ModelsGenesis - 3D医疗影像自监督预训练模型
3D医学影像GithubModels Genesis医学图像分析开源项目自学习迁移学习
此项目推出了名为Generic Autodidactic Models的预训练模型,专为3D医学影像应用设计,特别适合标注数据有限的情况。这一模型通过自监督学习实现自我训练,无需人工标注,并能生成各种应用场景的目标模型。Models Genesis性能显著优于从零开始训练的3D模型,甚至超过了包括ImageNet模型在内的2D方法,尤其在分割肝脏、肿瘤和海马体方面表现卓越。
image-super-resolution - Keras实现的高质量图像超分辨率,支持多种网络结构和训练脚本
GANGithubImage Super-ResolutionKerasPSNRResidual Dense Networks开源项目
本项目旨在通过实现多种残差密集网络(RDN)和残差在残差密集网络(RRDN)来提升低分辨率图像的质量,并支持Keras框架。项目提供了预训练模型、训练脚本以及用于云端训练的Docker脚本。适用于图像超分辨率处理,兼容Python 3.6,开源并欢迎贡献。
UnboundedNeRFPytorch - 大规模神经辐射场基准测试的指南
BenchmarkGithubNeRFPytorchState-of-the-artUnbounded Neural Radiance Fields开源项目
UnboundedNeRFPytorch项目专注于基准测试多种最新的大规模神经辐射场(NeRF)算法,并提供简洁高效的代码库。项目展示了在Unbounded Tanks & Temples和Mip-NeRF-360基准测试中的优秀表现,旨在帮助研究人员和开发者提升NeRF应用效果。包括详细的安装步骤、数据处理指南和训练自定义NeRF模型的方法,适合技术用户快速上手并获得佳绩。
unified-io-2 - 跨模态人工智能的开源新标杆
GithubUnified-IO 2人工智能多模态模型开源项目机器学习深度学习
Unified-IO 2是一个开源的多模态AI框架,集成视觉、语言、音频和动作处理能力。项目提供完整代码支持演示、训练和推理,适用于TPU和GPU环境。基于T5X优化,内含多规格预训练模型和丰富数据集。其跨模态学习和生成能力为AI研究与应用提供了新的可能性。项目采用模块化设计,便于研究人员和开发者进行二次开发和定制。Unified-IO 2支持多种数据格式和预处理流程,为不同任务场景提供灵活解决方案。其开源性质促进了AI社区的协作与创新,为多模态AI技术的进步做出贡献。
MedMNIST - 标准化医学图像分类数据集
GithubMedMNIST医学图像分类开源项目数据集机器学习神经网络
MedMNIST是一个标准化的生物医学图像数据集,包含18个2D和3D子集。数据集提供28x28及更大尺寸的图像,涵盖多种医学影像模态,适用于不同的分类任务。总计约708K个2D图像和10K个3D图像,支持生物医学图像分析、计算机视觉和机器学习研究。MedMNIST以其多样性、标准化和易用性,成为评估机器学习算法和开发医学模型的重要资源。
ITK - N维科学图像处理与分析的开源跨平台工具包
GithubITKNumFOCUS医学影像图像处理开源软件开源项目
ITK是专门用于N维科学图像处理、分割和配准的开源跨平台工具包。它为医学图像处理、计算机视觉等领域提供了强大的分析功能。ITK同时支持C++和Python编程,拥有丰富的文档和示例资源,适用于教学、科研及商业应用。该项目获得NumFOCUS赞助,采用Apache 2.0开源许可证发布。
segmentation_models.pytorch - 基于PyTorch的神经网络图像分割库
GithubPyTorch图像分割开源项目神经网络编码器预训练模型
segmentation_models.pytorch 是一个基于 PyTorch 的图像分割库,提供9种分割模型架构和124种编码器。该库 API 简洁,支持预训练权重,并包含常用评估指标和损失函数。它适用于研究和实际应用中的各种图像分割任务,是图像分割领域的实用工具。
Virchow2 - 基于神经网络的病理切片图像分析与特征提取模型
GithubHuggingfacePyTorchVirchow2图像识别开源项目模型深度学习病理学
Virchow2是一个专门用于病理切片分析的深度学习模型,通过310万张医学图像训练而成。模型能够自动分析不同放大倍率的病理图像,提取关键特征信息,为计算病理学研究提供基础支持。其采用先进的视觉转换器架构,具备强大的图像处理能力。目前仅向学术研究机构开放使用,需要通过机构邮箱认证。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号