Project Icon

umberto-wikipedia-uncased-v1

UmBERTo模型专注意大利语NLP任务

UmBERTo Wikipedia Uncased是基于Roberta的意大利语语言模型,利用SentencePiece和Whole Word Masking技术进行训练。该模型展示出在命名实体识别和词性标注任务中的高表现,尤其是在F1和精确度指标上。模型训练于小规模的意大利语Wikipedia语料库,为意大利语应用提供支持。可以在huggingface平台上获取并进行应用测试。

Italian_NER_XXL - 意大利实体识别模型,识别52类实体
BERTGithubHuggingfaceItalian_NER_XXL实体识别开源项目更新模型自然语言处理
该人工智能模型能够识别52类意大利语实体,具备79%的准确率,并基于BERT技术进行持续更新。其在法律、金融和隐私等领域表现出色,提供多功能的实体识别支持。
universal_ner_ita - 意大利语命名实体识别,使用零样本学习适用于多领域
GLiNERGithubHugging FaceHuggingface命名实体识别开源项目意大利语模型零样本学习
该模型适用于意大利语命名实体识别,通过零样本学习实现对多种实体的识别,无需特定训练。可联系Michele Montebovi进行定制以提升性能。模型支持CPU运行并可通过浏览器直接体验。
LLaMAntino-2-7b-hf-ITA - 意大利语自然语言生成的大型语言模型
GithubHuggingfaceLLaMAntino-2-7bQLora开源项目意大利语模型自然语言生成超级计算机
LLaMAntino-2-7b 是一款专门适配意大利语的 LLaMA 2 大型语言模型,旨在支持自然语言生成任务。该模型采用 QLora 方法在 clean_mc4_it 中等数据集上进行训练,为意大利 NLP 研究提供基础。由 Pierpaolo Basile 等人开发,并获得 PNRR 项目 FAIR 的支持,在 Leonardo 超级计算机上运行。代码尚未发布,更多信息可通过 GitHub 获取。此模型以 Llama 2 社区许可证开放,适合应用于意大利语的自然语言处理任务。
SeewebLLM-it - 意大利语高效微调语言模型
GithubHuggingfaceLlama2Seeweb人工智能开源项目微调意大利语模型
SeewebLLM-it是一款针对意大利语优化的语言模型,基于LLama-2-7b-chat-hf精细微调,在Seeweb Cloud GPU的支持下经过训练,涵盖了约300个意大利语对话实例。虽然目前的输出在准确性上还需进一步提升,但随着训练数据集的扩展,该模型未来可在更多领域展现潜力。
opus-mt-it-en - 基于OPUS数据集的意大利语至英语神经机器翻译模型
GithubHuggingfaceOPUS-MT开源项目意大利语机器翻译模型神经网络模型英语
opus-mt-it-en是一个基于transformer-align架构的意大利语至英语神经机器翻译模型。该模型利用OPUS数据集训练,采用normalization和SentencePiece进行预处理。在多个测试集上表现优异,尤其在Tatoeba测试集上获得70.9的BLEU分数和0.808的chr-F分数,显示出较高的翻译质量。此外,该模型在newssyscomb2009和newstest2009等其他测试集上也展现了出色的跨领域翻译能力。
electra-base-italian-xxl-cased-discriminator - 意大利ELECTRA模型提升语言理解性能的理想工具
BERTBavarian State LibraryELECTRAGithubHuggingface开源项目意大利模型训练数据
意大利ELECTRA模型基于丰富的意大利语料库,旨在增强语言理解。该模型由拜仁州立图书馆的MDZ Digital Library团队开放,通过PyTorch-Transformers的兼容权重进行支持。使用81GB的数据进行训练,达到百余万步,使其在命名实体识别和词性标注等任务上表现优异。所有资源均可在Huggingface模型中心获取,便于快速集成到各类自然语言处理应用中。
Phi-3.5-mini-ITA - 小巧强大的意大利语文本生成模型优化与性能提升
GithubHuggingfacePhi-3.5-mini-ITAtransformers参数高效学习开源项目意大利语模型文本生成模型
Phi-3.5-mini-ITA是Microsoft/Phi-3.5-mini-instruct的精调版本,专为提升意大利语文本生成性能而设计。拥有3.82亿参数和128k上下文长度,适用于Hugging Face Spaces等平台的流畅对话。通过Spectrum技术,仅高信噪比层参与训练,提高了参数学习效率。评估显示模型在意大利语处理任务中表现卓越。
hubert-base-cc - 先进的匈牙利语BERT模型在自然语言处理任务中表现卓越
BERT模型GithubHuggingfacehuBERT匈牙利语命名实体识别开源项目模型自然语言处理
huBERT-base-cc是专为匈牙利语设计的BERT模型,基于Common Crawl和匈牙利维基百科数据训练而成。该模型在分块和命名实体识别等任务中表现优异,超越了多语言BERT的性能。作为一个通用的自然语言处理工具,huBERT-base-cc为匈牙利语研究和应用提供了强大支持,在多个领域树立了新的基准。
Llama-3.1-8b-ITA - 意大利语优化版Llama-3.1语言模型实现79.17%测试精确度
GithubHuggingfaceLlama-3.1-8b-ITA开源项目意大利语模型模型评估自然语言处理语言模型
Llama-3.1-8b-ITA是一个专注意大利语优化的大型语言模型,采用Meta-Llama-3.1-8B-Instruct架构。模型在IFEval零样本测试达到79.17%准确率,支持Python环境部署,可用于文本生成。在Open LLM排行榜中,BBH测试达30.93%,MMLU-PRO达31.96%,整体表现稳定。
Llama-3-8b-Ita - 基于Llama-3优化的意大利语大型语言模型
GithubHuggingfaceLlama-3-8b-Ita开源项目意大利语模型模型评估自然语言处理语言模型
Llama-3-8b-Ita是一个基于Meta-Llama-3-8B模型针对意大利语优化的大型语言模型。该模型在IFEval、BBH和MATH等多项评估任务中表现优异,支持意大利语和英语文本生成。模型可通过Python代码轻松调用,在Open LLM Leaderboard上的平均得分为26.58。Llama-3-8b-Ita在多语言处理方面展现出了良好的性能。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号