Project Icon

DeepLearningExamples

优化深度学习训练和部署的最佳实践

提供最新的深度学习示例,使用NVIDIA CUDA-X软件栈在Volta、Turing和Ampere GPU上运行,确保最佳的可重复精度和性能。示例通过NGC容器注册表每月更新,包含最新的NVIDIA贡献和深度学习软件库,支持计算机视觉、自然语言处理、推荐系统、语音识别、文本到语音转换、图神经网络和时间序列预测模型。

uvadlc_notebooks - 深度学习系列教程,覆盖优化、Transformer、图神经网络等多个主题
GithubJAX+FlaxPyTorchUvA Deep Learning Tutorials开源项目教程深度学习
这套深度学习教程有助于理解理论知识,涵盖优化、Transformer、图神经网络等主题。基于PyTorch和PyTorch Lightning框架,并提供JAX+Flax实现。教程支持本地运行、Google Colab和Snellius集群,多种方式供选择。每个教程包含详细的笔记本,实现理论与实践相结合。本课程与正式作业和考试相关,适合想深入了解深度学习及应用的学习者。
Machine-Learning-Guide - 全面的机器学习指南,从基础到前沿应用
Github人工智能开源项目机器学习深度学习自然语言处理计算机视觉
这份机器学习指南涵盖了从基础概念到前沿技术的各个方面,包括丰富的学习资源、主流框架工具介绍和热门应用领域。指南详细讲解了算法、深度学习、强化学习等核心主题,还提供了CUDA、MATLAB等相关技术的开发指南。涉及计算机视觉、自然语言处理等热门领域,并深入介绍PyTorch、TensorFlow等主流机器学习框架和工具,旨在提高机器学习开发效率。
learning-to-learn - TensorFlow和Sonnet在深度学习中的训练和评估优化指南
GithubSonnetTensorFlow优化器开源项目训练评估
了解如何使用TensorFlow和Sonnet在MNIST和CIFAR10等数据集上进行模型训练和评估。本文详细说明了命令行参数,涵盖了训练和评估的步骤,并介绍了从简单二次函数到复杂卷积神经网络的不同问题解决方案。掌握这些方法,可以实现自定义优化器并提高模型性能。
Azure-OpenAI-demos - Azure OpenAI最新应用展示与性能测试指南
AutogenAzure Cognitive SearchAzure OpenAIGPT-4GithubNeo4j开源项目
该项目汇集了Azure OpenAI最新的应用实例和模型性能测试,包括Neo4j集成、自动生成演示、GPT-4o和Phi-3 Vision等。涵盖了图像比较、车损协助、视频转文档生成、语音转写和摘要等多个领域,展示Azure OpenAI的多种强大功能。通过这些演示内容,用户可以了解如何有效地使用Azure OpenAI进行图像识别、文本生成和数据分析等多种实用工具的开发。
studio-lab-examples - 使用Amazon SageMaker Studio Lab的AI/ML学习示例
AI/MLAmazon SageMakerGithubJupyter notebooksSageMaker Studio Lab开源项目数据科学
本页面展示了如何使用Amazon SageMaker Studio Lab构建AI/ML学习环境的Jupyter笔记本示例,适用于个人数据科学家的ML学习之旅。包含计算机视觉、自然语言处理、地理空间数据科学和生成深度学习等领域的示例,以及详细的设置指南和AWS资源的连接方法。用户可以无需账户阅读或运行笔记本,并通过GitHub分享项目,是成为AI/ML实践者的有用参考资源。
deep-learning-roadmap - 为开发者和研究人员提供的从入门到高级应用全覆盖,涵盖图像识别、自然语言处理等关键领域深度学习的综合资源,
Github卷积神经网络图像识别开源项目强化学习深度学习生成模型
为开发者和研究人员提供深度学习的综合资源,从入门到高级应用全覆盖,涵盖图像识别、自然语言处理等关键领域。借助本平台,您可以迅速找到所需资源,掌握最前沿的深度学习技术。
AndroidTensorFlowMachineLearningExample - Android应用集成TensorFlow的详细教程
AndroidGithubTensorFlow对象检测开源项目机器学习示例项目
此项目提供了在Android应用中集成TensorFlow的详细指南。开发者可以学习如何构建和使用TensorFlow项目及其库文件(.so和.jar文件),通过具体示例了解如何使用TensorFlow进行物体检测,包括处理从相机拍摄的图像。适合希望将机器学习技术应用在移动设备上的开发者。
Daily-DeepLearning - 全面计算机基础、Python应用、数据科学及机器学习指南
GithubPython开源项目操作系统数据结构机器学习深度学习
提供丰富的计算机科学教育资源,涵盖数据结构、操作系统、计算机网络等基础课程。Python和数据科学部分包括numpy、pandas、matplotlib等流行库的使用教程。机器学习和深度学习部分涉及逻辑回归、集成学习、RNN、CNN等理论及实践内容,适合初学者及进阶学习者掌握计算机科学与人工智能技术。
djl-demo - 深度Java库示例集,推理、训练到多平台深度学习应用
Deep Java LibraryGithubJava API开源项目模型部署深度学习示例应用
代码仓库包含丰富的Deep Java Library (DJL)示例,展示了其在推理、训练、移动应用开发、云服务集成和大数据处理方面的多样化应用。涉及图像分类、对象检测和自然语言处理等领域,并提供了跨平台深度学习模型部署方案。这些实例有助于开发者迅速掌握DJL技术,并在多种实际场景中应用。
PyTorch_Tutorial - PyTorch深度学习实践教程
GithubPyTorch代码实践开源项目教程模型训练深度学习
PyTorch_Tutorial是一个综合性深度学习教程项目,专注于PyTorch框架的应用。教程涵盖基础到高级的模型训练技巧,提供计算机视觉、自然语言处理和大型语言模型等领域的实践案例。内容还包括ONNX和TensorRT等推理部署框架的使用指南,展示了从模型开发到部署的完整流程。项目定期更新,配有环境配置说明,适合深度学习研究者和实践者参考学习。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号