Project Icon

Megatron-LM

优化GPU训练技术 加速大规模Transformer模型

Megatron-LM框架利用GPU优化技术实现Transformer模型的大规模训练。其Megatron-Core组件提供模块化API和系统优化,支持自定义模型训练。该项目可进行BERT、GPT、T5等模型预训练,支持数千GPU分布式训练百亿参数级模型,并提供数据预处理、模型评估和下游任务功能。

Megatron-DeepSpeed - 分布式训练框架助力大规模语言模型预训练
DeepSpeed配置GPT预训练GithubMegatron-DeepSpeed分布式训练开源项目预处理数据
Megatron-DeepSpeed是一个集成DeepSpeed的大规模语言模型预训练框架。它支持多GPU和多节点分布式训练,提供数据预处理、预训练、微调和下游任务评估等完整流程。该框架针对BERT、GPT等模型优化,实现高效大规模训练。集成DeepSpeed的流水线并行和ZeRO-DP技术,进一步提升训练效率和灵活性。
mGPT - 基于GPT架构的大规模多语种自然语言处理模型
GPTGithubHuggingfaceMegatron多语言模型开源项目模型深度学习自然语言处理
作为一个基于GPT-3架构的多语言处理模型,mGPT具备13亿参数量,覆盖25个语系的61种语言。模型采用Wikipedia和Colossal Clean Crawled Corpus作为训练数据,结合Deepspeed与Megatron框架实现并行计算,在低资源语言处理领域达到与XGLM相当的性能水平。模型训练过程中处理了488亿UTF字符,借助256个NVIDIA V100 GPU完成了为期14天的训练。
FasterTransformer - 基于NVIDIA平台的高性能Transformer编解码器实现与调优
BERTFasterTransformerGPTGithubNVIDIATensorRT-LLM开源项目
FasterTransformer不仅支持多框架集成,还针对NVIDIA新一代GPU优化了编解码性能,极大提升了操作效率和处理速度。包含模型支持、性能对比及API演示的详细文档,有助于用户深入了解并有效使用FasterTransformer。
gpt-neox - 大规模语言模型训练库,支持多系统和硬件环境
DeepSpeedEleutherAIFlash AttentionGPT-NeoXGithubMegatron Language Model开源项目
GPT-NeoX是EleutherAI开发的库,专注于在GPU上训练大规模语言模型。它基于NVIDIA的Megatron,并结合了DeepSpeed技术,提供前沿的架构创新和优化,支持多种系统和硬件环境。广泛应用于学术界、工业界和政府实验室,支持AWS、CoreWeave、ORNL Summit等多个平台。主要功能包括分布式训练、3D并行、旋转和嵌入技术,以及与Hugging Face等开源库的无缝集成。
MEGABYTE-pytorch - 多尺度Transformer模型实现百万字节序列预测
AI模型GithubMEGABYTEPytorchTransformer开源项目深度学习
MEGABYTE-pytorch是一个基于PyTorch实现的多尺度Transformer模型,专门用于预测百万字节长度的序列。该项目具有灵活的配置选项,支持多个本地模型,并整合了Flash Attention等先进技术。MEGABYTE-pytorch通过简洁的API接口实现长序列处理、模型训练和文本生成。此外,项目提供了基于enwik8数据集的训练示例,为开发者提供了实用参考。
min-max-gpt - 为大规模GPT模型训练优化的开源框架
GPU训练GithubminGPT分布式训练大规模模型开源项目深度学习
min-max-gpt是一个针对大规模GPT模型训练优化的开源项目。该框架集成了muP初始化、混合精度训练、FSDP和DeepSpeed Zero-3等技术,并提供了不依赖Hugging Face的训练选项。这使得研究人员和开发者能够更灵活地控制训练过程。项目已在8块80GB A100 GPU上成功训练20B参数模型,展现了其在大规模语言模型训练方面的能力。
BitNet-Transformers - 缩放1-bit大语言模型,提高GPU内存利用率
BitNet-TransformersGithubHuggingfaceLLama(2)Wikitext-103pytorch开源项目
BitNet-Transformers项目使用Llama (2)架构,并通过1-bit权重缩放技术,实现对大型语言模型的高效训练和推理。该项目基于Huggingface Transformers,显著降低了GPU内存占用,从原始LLAMA的250MB减少到BitNet模型的最低要求。用户可通过wandb实时追踪训练进度,并在Wikitext-103上进行训练。项目提供了详细的开发环境配置和训练步骤指南,为研究者和开发者提供有力支持。
TensorRT-LLM - NVIDIA开发的大型语言模型推理优化工具
AI推理GPU加速GithubNVIDIATensorRT-LLM大语言模型开源项目
TensorRT-LLM是一个用于优化大型语言模型推理的开源工具。它提供Python API来定义模型和构建TensorRT引擎,支持多GPU和多节点部署。该工具集成了多种量化技术,如INT4/INT8权重量化和SmoothQuant,以提升性能和降低内存占用。TensorRT-LLM预置了多个常用模型,可根据需求进行修改和扩展。
llm-jp-1.3b-v1.0 - 大规模语言模型支持多语言和多种编程语言
GithubHuggingfaceLLM-jp大型语言模型开源项目模型深度学习自然语言处理训练数据
此大规模语言模型由日本研发,支持多语言(含日语和英语)及多编程语言。采用Transformer架构,经过预训练和指令调优,适用于多种自然语言处理任务。模型在多个硬件和软件环境中优化,包括使用Megatron-DeepSpeed和TRL,可用于生成自然语言文本,应用广泛,性能优异。
bigscience - 大规模语言模型研究与进展更新
GPT2GithubMegatron-DeepSpeedbigsciencelarge language models开源项目训练
BigScience项目专注于大规模语言模型的研究与训练,包含丰富的实验、数据集信息和训练进展。用户可以访问详细文档和实时日志,了解当前模型表现及关键发现。项目涵盖从基础GPT-2模型到不同规模与架构的大型模型,并提供详尽的操作流程及讨论记录。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号