Project Icon

AI-generated_images_detector

高精度AI生成图像检测模型,适用于图像分类任务

该高精度AI生成图像检测模型专注于图像分类,适用于imagefolder数据集验证。模型训练后达到了0.9736的准确率,能够有效区分生成与真实图像。通过transformers库中的pipeline进行推理,只需将图像传递给模型即可获得分类结果,适用于对图像分类精度要求较高的应用,能够有效提升AI生成内容的识别能力。

MiniLM-L12-H384-uncased_Nvidia-Aegis-AI-Safety - 基于MiniLM的多标签文本分类模型实现AI内容安全检测
AI安全GithubHuggingfaceMiniLM开源项目文本分类模型深度学习自然语言处理
本模型基于MiniLM-L12-H384-uncased在Nvidia Aegis AI安全数据集上微调,可识别14类有害内容。在测试集上达到95.15%的准确率和66.83%的精确度。模型能够检测包括受管制物质、犯罪计划、欺诈、非法武器等多种有害内容,为AI系统的内容安全审核提供支持。
AIGS - AI生成图像作为数据源的前沿探索与应用
AI生成图像Github开源项目数据源深度学习综述计算机视觉
AIGS项目系统研究了AI生成图像(AIGC)作为数据源的最新发展。通过对方法和应用的分类,该项目全面概述了AIGC在视觉领域的进展,包括生成模型、神经渲染等技术,以及在2D/3D视觉感知、图像生成和自监督学习等方面的应用。此外,项目整理了相关数据集,为AIGC研究提供了丰富资源。
AbsoluteReality_v1.8.1 - 先进的逼真AI图像生成模型
AI绘画CivitAIGithubHuggingfaceStable Diffusion人工智能艺术开源项目文本生成图像模型
AbsoluteReality_v1.8.1是一个开源的AI图像生成模型,专注于创建高度逼真的视觉内容。该模型能够生成细节丰富的人物肖像、动物和场景图像,特别擅长呈现精细的盔甲、毛发纹理和机甲装备。AbsoluteReality_v1.8.1适用于多种创作场景,包括中世纪风格人物、自然动物照片和科幻主题插图。这一工具为数字艺术创作者提供了生成高质量、真实感强的视觉素材的能力。
food-category-classification-v2.0 - 12类食品图像分类模型 准确率达96%
GithubGradioHuggingface图像识别开源项目机器学习模型深度学习食品分类
food-category-classification-v2.0是一个食品类别图像分类模型,可识别12种食品类别,包括面包、乳制品、甜点、蛋类、油炸食品、水果、肉类、面条、米饭、海鲜、汤和蔬菜。模型通过分析图像视觉特征进行分类,适用于食品博客、餐厅和食谱网站的图片管理。准确率达96%,可提高内容分类效率。
HyperPhotoGASM - AI图像生成模型结合超现实主义和摄影技巧创造精细人像
AI绘图GithubHuggingfaceStable Diffusion图像融合开源项目模型照片级真实感肖像生成
HyperPhotoGASM融合了HyperRealism 1.2和DreamPhotoGASM的优点,生成超现实主义风格的照片级图像。模型擅长创作电影场景、情侣肖像和角色扮演图像,呈现细节丰富、光影逼真的效果。这个开源项目为创意视觉概念的实现提供了新的可能性。
ImageAI - 使用简便的代码实现深度学习和计算机视觉功能的开源Python库
GithubImageAI对象检测开源项目深度学习自定义模型训练计算机视觉
ImageAI是一款开源的Python库,帮助开发者使用简便的代码实现深度学习和计算机视觉功能。该库支持图像预测、目标检测、视频检测及对象跟踪等多种功能。新版本引入了PyTorch后端和TinyYOLOv3模型训练,提升了性能并扩展了功能。用户还可以训练自定义模型识别新对象。有关如何安装和使用ImageAI的详细信息,请参阅项目文档和指南。
cards-top_left_swin-tiny-patch4-window7-224-finetuned-dough_100_epoch - Swin-Tiny模型微调的图像分类系统 在ImageFolder数据集达58.16%准确率
GithubHuggingfaceSwin Transformer准确率图像分类开源项目机器学习模型模型微调
本项目基于microsoft/swin-tiny-patch4-window7-224模型微调,构建了一个图像分类系统。经过100轮训练,在ImageFolder数据集上达到58.16%的分类准确率。项目使用Adam优化器和线性学习率调度器,总批量大小为128。系统基于PyTorch框架开发,为图像分类任务提供了实用的基础模型。
Generative-AI - 多模态图像合成与编辑技术及其分类
Data ModalityGenerative AIGithubMultimodal Image Synthesis and EditingTaxonomyVisual AIGC开源项目
该项目附有一篇综述论文,全面分析了多模态图像合成与编辑(MISE)和视觉AIGC的发展情况,并根据数据模态和模型架构进行了分类研究。通过此项研究,科研人员和技术开发者可以深入了解神经渲染、扩散方法、自回归方法及对抗生成网络(GAN)等不同技术及其应用,帮助更好地掌握多模态图像合成技术的前沿进展与实际应用。
rorshark-vit-base - ViT架构图像分类模型实现99.23%精度
GithubHuggingfaceViT准确率图像分类开源项目机器学习模型训练模型
rorshark-vit-base是基于google/vit-base-patch16-224-in21k模型微调的图像分类器。该模型采用Vision Transformer架构,在imagefolder数据集上达到99.23%的分类准确率。经过5轮训练,使用Adam优化器和线性学习率调度。虽然在高精度图像分类任务中表现出色,但其具体应用场景和局限性有待进一步研究。
resnet-50-finetuned-cats_vs_dogs - ResNet-50微调模型实现高精度猫狗图像分类
GithubHuggingfaceResNet-50图像分类开源项目模型模型微调深度学习猫狗识别
项目利用微软的ResNet-50架构,通过在cats_vs_dogs数据集上进行微调,开发出一个高效的猫狗图像分类模型。训练过程中使用Adam优化器和线性学习率调度器,仅需3个训练周期即达到优异性能:评估集准确率98.93%,验证损失0.0889。这一成果展示了预训练模型在特定图像分类任务中的适应性和高效性。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号