Project Icon

metaflow-service

Metaflow元数据服务实现 优化机器学习工作流管理

Metaflow-service为Metaflow提供元数据服务实现,通过轻量级数据库封装跟踪Flows、Runs、Steps等Metaflow实体的元数据。项目包含元数据服务和迁移服务,支持数据库迁移和版本兼容性管理。提供REST API接口,支持Docker容器部署,简化机器学习工作流的元数据管理流程。

Metaflow Service

Metadata service implementation for Metaflow.

This provides a thin wrapper around a database and keeps track of metadata associated with metaflow entities such as Flows, Runs, Steps, Tasks, and Artifacts.

For more information, see Metaflow's admin docs

Getting Started

The service depends on the following Environment Variables to be set:

  • MF_METADATA_DB_HOST [defaults to localhost]
  • MF_METADATA_DB_PORT [defaults to 5432]
  • MF_METADATA_DB_USER [defaults to postgres]
  • MF_METADATA_DB_PSWD [defaults to postgres]
  • MF_METADATA_DB_NAME [defaults to postgres]

Optionally you can also overrider the host and port the service runs on

  • MF_METADATA_PORT [defaults to 8080]
  • MF_MIGRATION_PORT [defaults to 8082]
  • MF_METADATA_HOST [defaults to 0.0.0.0]

Create triggers to broadcast any database changes via pg_notify on channel NOTIFY:

  • DB_TRIGGER_CREATE
    • [metadata_service defaults to 0]
    • [ui_backend_service defaults to 1]
pip3 install ./
python3 -m services.metadata_service.server

Swagger UI: http://localhost:8080/api/doc

Using docker-compose

Easiest way to run this project is to use docker-compose and there are two options:

  • docker-compose.yml
    • Assumes that Dockerfiles are pre-built and local changes are not included automatically
    • See docker build section on how to pre-build the Docker images
  • docker-compose.development.yml
    • Development version
    • Includes automatic Dockerfile builds and mounts local ./services folder inside the container

Running docker-compose.yml:

docker-compose up -d

Running docker-compose.development.yml (recommended during development):

docker-compose -f docker-compose.development.yml up
  • Metadata service is available at port :8080.
  • Migration service is available at port :8082.
  • UI service is available at port :8083.

to access the container run

docker exec -it metadata_service /bin/bash

within the container curl the service directly

curl localhost:8080/ping

Using published image on DockerHub

Latest release of the image is available on dockerhub

docker pull netflixoss/metaflow_metadata_service

Be sure to set the proper env variables when running the image

docker run -e MF_METADATA_DB_HOST='<instance_name>.us-east-1.rds.amazonaws.com' \
-e MF_METADATA_DB_PORT=5432 \
-e MF_METADATA_DB_USER='postgres' \
-e MF_METADATA_DB_PSWD='postgres' \
-e MF_METADATA_DB_NAME='metaflow' \
-it -p 8082:8082 -p 8080:8080 metaflow_metadata_service

Running tests

Tests are run using Tox and pytest.

Run following command to execute tests in Dockerized environment:

docker-compose -f docker-compose.test.yml up -V --abort-on-container-exit

Above command will make sure there's PostgreSQL database available.

Usage without Docker:

The test suite requires a PostgreSQL database, along with the following environment variables for connecting the tested services to the DB.

  • MF_METADATA_DB_HOST=db_test
  • MF_METADATA_DB_PORT=5432
  • MF_METADATA_DB_USER=test
  • MF_METADATA_DB_PSWD=test
  • MF_METADATA_DB_NAME=test
# Run all tests
tox

# Run unit tests only
tox -e unit

# Run integration tests only
tox -e integration

# Run both unit & integrations tests in parallel
tox -e unit,integration -p

Executing flows against a local Metadata service

With the metadata service up and running at http://localhost:8080, you are able to use this as the service when executing Flows with the Metaflow client locally via

METAFLOW_SERVICE_URL=http://localhost:8080 METAFLOW_DEFAULT_METADATA="service" python3 basicflow.py run

Alternatively you can configure a default profile with the service URL for the Metaflow client to use. See Configuring metaflow for instructions.

Migration Service

The Migration service is a tool to help users manage underlying DB migrations and launch the most recent compatible version of the metadata service

Note that it is possible to run the two services independently and a Dockerfile is supplied for each service. However the default Dockerfile combines the two services.

Also note that at runtime the migration service and the metadata service are completely disjoint and do not communicate with each other

Migrating to the latest db schema

Note may need to do a rolling restart to get latest version of the image if you don't have it already

You can manage the migration either via the api provided or with the utility cli provided with migration_tools.py

  • check status and note version you are on
    • Api: /db_schema_status
    • cli: python3 migration_tools.py db-status
  • see if there are migrations to be run
    • if there are any migrations to be run is_up_to_date should be false and a list of migrations to be applied will be shown under unapplied_migrations
  • take backup of db
    • in case anything goes wrong it is a good idea to take a back up of the db
  • migrations may cause downtime depending on what is being run as part of the migration
  • Note concurrent updates are not supported. it may be advisable to reduce your cluster size to a single node
  • upgrade db schema
    • Api: /upgrade
    • cli: python3 migration_tools.py upgrade
  • check status again to verify you are on up to date version
    • Api: /db_schema_status
    • cli: python3 migration_tools.py db-status
    • Note that is_up_to_date should be set to True and migration_in_progress should be set to False
  • do a rolling restart of the metadata service cluster
    • In order for the migration to be effective a full restart of the containers is required
  • latest available version of service should be ready
    • cli: python3 migration_tools.py metadata-service-version
  • If you had previously scaled down your cluster it should be safe to return it to the desired number of containers

Under the Hood: What is going on in the Docker Container

Within the published metaflow_metadata_service image the migration service is packaged along with the latest version of the metadata service compatible with every version of the db. This means that multiple versions of the metadata service comes bundled with the image, each is installed under a different virtual env.

When the container spins up, the migration service is launched first and determines what virtualenv to activate depending on the schema version of the DB. This will determine which version of the metadata service will run.

Release

See the release docs

Get in Touch

There are several ways to get in touch with us:

项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号