Project Icon

mlforecast

高性能可扩展的机器学习时间序列预测框架

mlforecast是一个基于机器学习模型的时间序列预测框架,具有高效的特征工程实现和良好的可扩展性。该框架支持pandas、polars、spark等多种数据格式,兼容sklearn API,能够处理海量数据。除了支持概率预测和外生变量,mlforecast还提供分布式训练功能,适用于大规模生产环境的时间序列预测任务。框架采用熟悉的fit和predict接口,便于快速上手和集成到现有项目中。

modeltime - R语言时间序列预测框架 整合机器学习与传统方法
GithubR语言modeltime工作流开源项目时间序列预测机器学习
modeltime是R语言的时间序列预测框架,简化了预测工作流程,整合机器学习和传统分析方法。支持ARIMA、ETS、Prophet等模型,可与tidymodels生态系统集成。通过6步流程,用户可快速构建、评估和部署预测模型,适用于高性能时间序列分析。框架还包括modeltime.h2o用于AutoML、modeltime.gluonts用于深度学习,以及modeltime.ensemble用于集成预测。这些组件共同构成了一个全面的时间序列分析生态系统,为不同规模和复杂度的预测任务提供解决方案。
timesfm - 谷歌研究院开发的时间序列预测基础模型
GithubTimesFM基础模型开源项目时间序列预测深度学习
TimesFM是谷歌研究院开发的时间序列预测基础模型,支持多种时间频率的单变量预测。模型可处理最长512个时间点的上下文和任意长度的预测范围,提供简单的API接口支持数组和pandas输入。通过外部回归器库,TimesFM能处理静态和动态协变量。此外,该模型支持微调功能,允许用户在自有数据上优化性能。
prophet - 开源时间序列预测库Prophet
FacebookGithubProphet开源软件开源项目时间序列预测机器学习
Prophet是Facebook开发的开源时间序列预测库。基于加法模型,它能处理非线性趋势、多重季节性和节假日效应。适用于具有强季节性且拥有较长历史数据的时间序列,对缺失数据和趋势变化有较强适应性。Prophet支持Python和R语言,API简洁易用,可快速生成高质量预测。
microprediction - 多功能时间序列预测和优化开源工具集
Githubmicroprediction开源项目时间序列预测算法优化金融预测
microprediction是一个综合性开源项目集,专注于时间序列预测和优化。该项目提供多个Python库,包括humpDay、timemachines和precise,分别用于无导数优化器评估、增量时间序列预测和协方差估计。这些工具能帮助提高预测精度和模型性能。项目还包含丰富的基准测试和评估工具,便于比较不同方法的效果。适用于数据科学研究和实际应用场景。
sktime - 多功能时间序列分析和预测库
GithubPython库sktime开源项目时间序列分析机器学习统一接口
sktime是一个开源的Python时间序列分析库,为多种时间序列学习任务提供统一接口。它支持时间序列分类、回归、聚类、标注和预测等功能,并提供专门的时间序列算法和兼容scikit-learn的工具。sktime还整合了多个相关库的接口,便于用户在不同时间序列任务间迁移算法。
functime - 高性能时间序列机器学习Python库
GithubPolarsPython库全局预测开源项目时间序列机器学习特征提取
functime是一个面向大规模时间序列数据分析的Python库,提供高效的全局预测和特征提取功能。它支持时间序列预处理、交叉验证和性能评估,通过惰性Polars变换实现优化。该库能快速处理海量时间序列,支持外生特征和自动化调优,并集成LLM代理用于预测分析,适用于各种机器学习和数据分析任务。
TFB - 时间序列预测评估框架
GithubTFB基准测试开源库开源项目时序预测评估框架
TFB是一个为时间序列预测研究设计的开源库。它提供清晰的代码库,支持对预测模型进行端到端评估,并通过多种策略和指标比较模型性能。TFB特点包括多样化数据集、全面基线模型、灵活评估策略和丰富评估指标。研究人员可利用TFB开发新方法或评估自有时间序列数据。
pyaf - Python开源库实现自动化时间序列预测
GithubPyAFPython开源项目时间序列预测机器学习自动化
PyAF是一个开源的Python自动预测库,基于NumPy、SciPy等流行数据科学模块构建。该库利用机器学习方法自动预测时间序列未来值,功能comparable于一些商业预测产品。它支持信号分解、外生数据和层次预测,提供简洁API和可定制建模过程。PyAF适用于Python 3.x,采用BSD 3-Clause许可证。PyAF可用于销售预测、股票走势分析、能源需求预测等多种时间序列预测任务。
chronos-forecasting - 基于语言模型架构的预训练时间序列预测工具
AutoGluonChronosGithub开源项目时间序列语言模型预训练
Chronos是一款基于语言模型架构的预训练时间序列预测工具。它通过量化处理将时间序列转换为标记序列,并使用大规模的公开和合成数据进行训练。Chronos模型在零样本场景中表现优异,提供从预测到嵌入提取的完整解决方案。通过AutoGluon,用户可轻松进行模型集成和云端部署,提升预测性能和应用的灵活性。
mcfly - 简化时间序列深度学习的开源框架
GithubTensorflowmcfly回归分析开源项目时间序列分类深度学习
mcfly是一个开源的深度学习框架,专门用于时间序列分类和回归。它能直接处理原始数据,无需计算信号特征或专业领域知识,在加速度计数据的活动分类等任务中表现出色。该框架基于TensorFlow 2构建,支持Python 3.10和3.11,并提供可视化工具展示模型配置和性能。mcfly与传统机器学习技术相比具有竞争力,欢迎社区贡献。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号