Project Icon

open-metric-learning

开源的PyTorch度量学习框架 支持多模态嵌入训练

open-metric-learning是一个基于PyTorch的开源度量学习框架,用于训练和验证高质量嵌入模型。它提供端到端流水线、实用案例和预训练模型库,支持图像和文本等多种模态。该框架具有统一的检索结果处理和评估方法,适用于人脸识别、商品搜索等嵌入学习任务。已被多家知名公司和机构采用,是一个功能丰富、易于上手的度量学习工具。

Documentation Status PyPI Status Pipi version python python python python

OML is a PyTorch-based framework to train and validate the models producing high-quality embeddings.

Trusted by

ㅤㅤ ㅤㅤ ㅤㅤ ㅤㅤ ㅤㅤ ㅤㅤ ㅤㅤ ㅤㅤ

ㅤㅤ

There is a number of people from Oxford and HSE universities who have used OML in their theses. [1] [2] [3]

OML 3.0 has been released!

The update focuses on several components:

  • We added "official" texts support and the corresponding Python examples. (Note, texts support in Pipelines is not supported yet.)

  • We introduced the RetrievalResults (RR) class — a container to store gallery items retrieved for given queries. RR provides a unified way to visualize predictions and compute metrics (if ground truths are known). It also simplifies post-processing, where an RR object is taken as input and another RR_upd is produced as output. Having these two objects allows comparison retrieval results visually or by metrics. Moreover, you can easily create a chain of such post-processors.

    • RR is memory optimized because of using batching: in other words, it doesn't store full matrix of query-gallery distances. (It doesn't make search approximate though).
  • We made Model and Dataset the only classes responsible for processing modality-specific logic. Model is responsible for interpreting its input dimensions: for example, BxCxHxW for images or BxLxD for sequences like texts. Dataset is responsible for preparing an item: it may use Transforms for images or Tokenizer for texts. Functions computing metrics like calc_retrieval_metrics_rr, RetrievalResults, PairwiseReranker, and other classes and functions are unified to work with any modality.

    • We added IVisualizableDataset having method .visaulize() that shows a single item. If implemented, RetrievalResults is able to show the layout of retrieved results.

Migration from OML 2.* [Python API]:

The easiest way to catch up with changes is to re-read the examples!

  • The recommended way of validation is to use RetrievalResults and functions like calc_retrieval_metrics_rr, calc_fnmr_at_fmr_rr, and others. The EmbeddingMetrics class is kept for use with PyTorch Lightning and inside Pipelines. Note, the signatures of EmbeddingMetrics methods have been slightly changed, see Lightning examples for that.

  • Since modality-specific logic is confined to Dataset, it doesn't output PATHS_KEY, X1_KEY, X2_KEY, Y1_KEY, and Y2_KEY anymore. Keys which are not modality-specific like LABELS_KEY, IS_GALLERY, IS_QUERY_KEY, CATEGORIES_KEY are still in use.

  • inference_on_images is now inference and works with any modality.

  • Slightly changed interfaces of Datasets. For example, we have IQueryGalleryDataset and IQueryGalleryLabeledDataset interfaces. The first has to be used for inference, the second one for validation. Also added IVisualizableDataset interface.

  • Removed some internals like IMetricDDP, EmbeddingMetricsDDP, calc_distance_matrix, calc_gt_mask, calc_mask_to_ignore, apply_mask_to_ignore. These changes shouldn't affect you. Also removed code related to a pipeline with precomputed triplets.

Migration from OML 2.* [Pipelines]:

  • Feature extraction: No changes, except for adding an optional argument — mode_for_checkpointing = (min | max). It may be useful to switch between the lower, the better and the greater, the better type of metrics.

  • Pairwise-postprocessing pipeline: Slightly changed the name and arguments of the postprocessor sub config — pairwise_images is now pairwise_reranker and doesn't need transforms.

Documentation

FAQ
Why do I need OML?

You may think "If I need image embeddings I can simply train a vanilla classifier and take its penultimate layer". Well, it makes sense as a starting point. But there are several possible drawbacks:

  • If you want to use embeddings to perform searching you need to calculate some distance among them (for example, cosine or L2). Usually, you don't directly optimize these distances during the training in the classification setup. So, you can only hope that final embeddings will have the desired properties.

  • The second problem is the validation process. In the searching setup, you usually care how related your top-N outputs are to the query. The natural way to evaluate the model is to simulate searching requests to the reference set and apply one of the retrieval metrics. So, there is no guarantee that classification accuracy will correlate with these metrics.

  • Finally, you may want to implement a metric learning pipeline by yourself. There is a lot of work: to use triplet loss you need to form batches in a specific way, implement different kinds of triplets mining, tracking distances, etc. For the validation, you also need to implement retrieval metrics, which include effective embeddings accumulation during the epoch, covering corner cases, etc. It's even harder if you have several gpus and use DDP. You may also want to visualize your search requests by highlighting good and bad search results. Instead of doing it by yourself, you can simply use OML for your purposes.

What is the difference between Open Metric Learning and PyTorch Metric Learning?

PML is the popular library for Metric Learning, and it includes a rich collection of losses, miners, distances, and reducers; that is why we provide straightforward examples of using them with OML. Initially, we tried to use PML, but in the end, we came up with our library, which is more pipeline / recipes oriented. That is how OML differs from PML:

  • OML has Pipelines which allows training models by preparing a config and your data in the required format (it's like converting data into COCO format to train a detector from mmdetection).

  • OML focuses on end-to-end pipelines and practical use cases. It has config based examples on popular benchmarks close to real life (like photos of products of thousands ids). We found some good combinations of hyperparameters on these datasets, trained and published models and their configs. Thus, it makes OML more recipes oriented than PML, and its author confirms this saying that his library is a set of tools rather the recipes, moreover, the examples in PML are mostly for CIFAR and MNIST datasets.

  • OML has the Zoo of pretrained models that can be easily accessed from the code in the same way as in torchvision (when you type resnet50(pretrained=True)).

  • OML is integrated with PyTorch Lightning, so, we can use the power of its Trainer. This is especially helpful when we work with DDP, so, you compare our DDP example and the PMLs one. By the way, PML also has Trainers, but it's not widely used in the examples and custom train / test functions are used instead.

We believe that having Pipelines, laconic examples, and Zoo of pretrained models sets the entry threshold to a really low value.

What is Metric Learning?

Metric Learning problem (also known as extreme classification problem) means a situation in which we have thousands of ids of some entities, but only a few samples for every entity. Often we assume that during the test stage (or production) we will deal with unseen entities which makes it impossible to apply the vanilla classification pipeline directly. In many cases obtained embeddings are used to perform search or matching procedures over them.

Here are a few examples of such tasks from the computer vision sphere:

  • Person/Animal Re-Identification
  • Face Recognition
  • Landmark Recognition
  • Searching engines for online shops and many others.

Glossary (Naming convention)

  • embedding - model's output (also known as features vector or descriptor).
  • query - a sample which is used as a request in the retrieval procedure.
  • gallery set - the set of entities to search items similar to query (also known as reference or index).
  • Sampler - an argument for DataLoader which is used to form batches
  • Miner - the object to form pairs or triplets after the batch was formed by Sampler. It's not necessary to form the combinations of samples only inside the current batch, thus, the memory bank may be a part of Miner.
  • Samples/Labels/Instances - as an example let's consider DeepFashion dataset. It includes thousands of fashion item ids (we name them labels) and several photos for each item id (we name the individual photo as instance or sample). All of the fashion item ids have their groups like "skirts", "jackets", "shorts" and so on (we name them categories). Note, we avoid using the term class to avoid misunderstanding.
  • training epoch - batch samplers which we use for combination-based losses usually have a length equal to [number of labels in training dataset] / [numbers of labels in one batch]. It means that we don't observe all of the available training samples in one epoch (as opposed to vanilla classification), instead, we observe all of the available labels.

How good may be a model trained with OML?

It may be comparable with the current (2022 year) SotA methods, for example, Hyp-ViT. (Few words about this approach: it's a ViT architecture trained with contrastive loss, but the embeddings were projected into some hyperbolic space. As the authors claimed, such a space is able to describe the nested structure of real-world data. So, the paper requires some heavy math to adapt the usual operations for the hyperbolical space.)

We trained the same architecture with triplet loss, fixing the rest of the parameters: training and test transformations, image size, and optimizer. See configs in Models Zoo. The trick was in heuristics in our miner and sampler:

  • Category Balance Sampler forms the batches limiting the number of categories C in it. For instance, when C = 1 it puts only jackets in one batch and only jeans into another one (just an example). It automatically makes the negative pairs harder: it's more meaningful for a model to realise why two jackets are different than to understand the same about a jacket and a t-shirt.

  • Hard Triplets Miner makes the task even harder keeping only the hardest triplets (with maximal positive and minimal negative distances).

Here are CMC@1 scores for 2 popular benchmarks. SOP dataset: Hyp-ViT — 85.9, ours — 86.6. DeepFashion dataset: Hyp-ViT — 92.5, ours — 92.1. Thus, utilising simple heuristics and avoiding heavy math we are able to perform on SotA level.

What about Self-Supervised Learning?

Recent research

项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号