Project Icon

EfficientQAT

高效量化训练技术助力大型语言模型压缩

EfficientQAT是一种针对大型语言模型的量化训练技术。该技术采用两阶段训练方法,包括分块训练所有参数和端到端训练量化参数,在压缩模型大小的同时保持性能。EfficientQAT支持GPTQ和BitBLAS等多种量化格式,已成功应用于Llama和Mistral等模型系列,有效降低模型存储需求,为大型语言模型的部署提供了实用方案。

Meta-Llama-3.1-70B-Instruct-GPTQ-INT4 - INT4量化版提升多语言对话效率
GPTQGithubHuggingfaceMeta-Llama-3.1-70B-Instruct大语言模型开源项目推理模型量化
本项目展示了Meta Llama 3.1 70B Instruct模型的INT4量化版本。通过AutoGPTQ技术,将原FP16模型压缩至INT4精度,在维持性能的同时显著减少内存使用,仅需约35GB显存即可运行。该项目兼容多个推理框架,如Transformers、AutoGPTQ、TGI和vLLM,便于根据不同需求进行选择。项目还附有详细的量化复现指南,方便用户独立完成模型量化过程。
Meta-Llama-3.1-8B-Instruct-AWQ-INT4 - 高性能4比特量化优化版本
AutoAWQGithubHuggingfaceMeta-Llama-3.1大语言模型开源项目推理模型量化
Meta-Llama-3.1-8B-Instruct模型的社区驱动4比特量化版本,采用AutoAWQ技术从FP16量化到INT4。该版本仅需4GB显存即可加载,大幅降低内存占用。支持Transformers、AutoAWQ、TGI和vLLM等多种推理方式,适用于不同部署场景。量化模型在保持原始性能的同时,为资源受限环境提供了高效的大语言模型方案。
Llama-2-7B-Chat-AWQ - 高效4位量化提升AI对话性能
GithubHuggingfaceLlama 2Meta低比特量化对话生成开源项目文本生成模型
AWQ是一种高效的4位量化方法,在多用户环境中的并发推理中表现出色。它通过降低模型计算需求,实现小型GPU的部署,从而节省成本。AWQ支持vLLM服务器,尽管总体吞吐量低于未量化模型,但在有限硬件环境中提高了推理效率,例如70B模型可在48GB显存的GPU上运行。AWQ适合如Llama 2 7B Chat的对话优化模型,为AI助手应用提供成本效益高的解决方案。
StarCoder2-7B-GGUF - 多种量化模型版本,提升代码生成性能与存储效率
GithubHuggingfaceLlamaEdgeStarCoder2代码生成开源项目模型模型压缩量化模型
此项目提供多种量化模型版本,旨在优化代码生成任务中的性能与存储效率。可选范围包括小容量、质量损失较大的版本到大容量、质量损失低的版本,以满足各种需求。Q4_K_M与Q5_K_M模型在质量与容量间表现出良好的平衡。该项目使用llama.cpp进行量化,适合空间与性能有特定需求的开发者。
TinyLlama-1.1B-Chat-v0.3-GPTQ - TinyLlama 1.1B Chat GPTQ模型的多样化量化参数选择及使用指南
GPTQGithubHuggingfaceTinyLlamaZhang Peiyuan开源项目模型模型推理量化
项目提供多种GPTQ模型参数,支持不同推理需求,参数包括位深、组大小与激活顺序,以适应多种硬件需求。由TheBloke进行模型量化,支持GPTQ客户端兼容性,校准数据集确保量化精度,如wikitext。提供灵活的分支信息,便于集成至文本生成工具或Python应用中。
Midnight-Miqu-70B-v1.5-4bit - 为大规模语言模型提供高效4位量化部署方案
AI模型压缩AWQGithubHuggingfaceMidnight-Miqu-70Blmdeploy开源项目模型量化模型
Midnight-Miqu-70B-v1.5-4bit是一个经过lmdeploy工具优化的4位量化模型,旨在实现大规模语言模型的高效部署。该项目通过自动量化技术显著减小模型体积,同时保持性能稳定。这为在资源受限环境中部署强大语言模型提供了实用解决方案,可应用于多种自然语言处理任务。
brevitas - 面向神经网络量化的PyTorch库
BrevitasGithubPyTorch开源项目神经网络量化训练后量化量化感知训练
Brevitas是一个开源的神经网络量化PyTorch库,支持PTQ和QAT。它为常见PyTorch层提供量化版本,如QuantConv和QuantLSTM等,允许精细调整量化参数。兼容Python 3.8+和PyTorch 1.9.1-2.1,跨平台支持,推荐GPU加速。作为研究项目,Brevitas在深度学习模型压缩和效率优化方面具有重要应用价值。
Mistral-7B-OpenOrca-GPTQ - Mistral语言模型的GPTQ量化优化实现
GPTQ量化GithubHuggingfaceMistral-7B开源项目模型模型部署深度学习自然语言处理
本项目对Mistral-7B-OpenOrca模型进行GPTQ量化处理,提供4位和8位精度、多种分组大小的量化版本。通过优化存储和计算方式,在保持模型性能的同时大幅降低显存占用。项目支持text-generation-webui、Python等多种调用方式,并提供完整的使用文档。
TinyLlama-1.1B-Chat-v0.3-AWQ - 高效量化方法助力多用户场景下的快速推理
GithubHuggingfaceTinyLlama低比特量化多用户服务器开源项目推理效率模型
该项目采用AWQ低位量化方法,提高了多用户服务器场景下的Transformers推理速度和效率。相比GPTQ,AWQ在减少部署成本的同时,能够使用更小的GPU进行推理。TinyLlama模型支持4-bit量化,并兼容vLLM与Huggingface TGI插件,高效应对高并发需求。在Zhang Peiyuan的开发下,该模型适合计算和内存资源有限的开源项目部署。
llama-3-8b-Instruct - 开源大模型训练工具实现显著提速与内存优化
GithubHuggingfaceLlama-3内存优化开源项目性能优化模型模型微调深度学习
基于4bit量化技术的开源大语言模型训练工具,为Mistral、Gemma、Llama等主流模型提供优化方案。项目通过技术创新实现训练速度提升2-5倍,内存占用降低70%。支持GGUF格式导出和Hugging Face部署,提供多个免费Colab训练环境,降低了模型训练的硬件门槛。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号