Project Icon

OmniQuant

简便高效的大型语言模型量化技术

OmniQuant是一种高效的量化技术,支持多种大型语言模型(LLM)的权重和激活量化,包括LLaMa和OPT等。其实现了4位及更低精度的权重量化,并通过MLC-LLM优化在多种硬件设备上的推理性能和内存占用。此外,项目还支持Mixtral和Falcon模型的压缩应用,大幅降低内存需求,提高运行效率。

MiniCPM-V-2_6-GGUF - 使用imatrix量化优化模型性能
GithubHuggingfaceMiniCPM-V-2_6transformers多语言开源项目模型视觉处理量化
项目应用llama.cpp的imatrix量化方法,优化模型的文本性能。提供多种量化文件,适配不同硬件配置,尤其适合低RAM环境。这一技术允许根据系统RAM和GPU VRAM选择合适的模型,实现性能与速度的平衡。支持多模态图像-文本转换和多语言处理,可在LM Studio中运行,为开源社区提供多样化的工具和使用选择。
Meta-Llama-3.1-8B-Instruct-FP8-KV - FP8量化策略提升模型计算效率
FP8GithubHuggingfaceMeta-Llama-3.1-8B-InstructQuark开源项目模型部署量化策略
项目利用Quark工具对模型的线性层进行FP8量化,实现更高效的部署和轻微的推理性能提升。使用Pile数据集进行校准,提高模型性能。支持单GPU和多GPU环境,便于在vLLM兼容后端进行高效部署,Perplexity指标略有提升。
hqq - 无需校准数据即可快速精确量化大模型的工具
8,4,3,2,1 bitsCUDAGithubHQQtorch.compile开源项目模型量化
HQQ是一种无需校准数据即可快速精确量化大模型的工具,支持从8bit到1bit的多种量化模式。兼容LLMs和视觉模型,并与多种优化的CUDA和Triton内核兼容,同时支持PEFT训练和Pytorch编译,提升推理和训练速度。详细基准测试和使用指南请访问官方博客。
Meta-Llama-3-8B-Instruct-quantized.w8a16 - 智能LLM量化技术实现50%体积压缩并完整保留性能
GithubHuggingfaceMeta-Llama-3OpenLLM人工智能开源项目权重优化模型模型量化
Meta-Llama-3-8B-Instruct模型经INT8量化优化后,参数位数从16位降至8位,减少约50%磁盘空间和GPU内存占用。在OpenLLM基准测试中,量化模型平均得分68.69,与原版68.54分相当。模型支持vLLM和transformers框架部署,适用于英语环境中商业和研究领域的AI助手应用。
AutoGPTQ - 基于GPTQ算法的LLM量化与推理优化工具包
AutoGPTQGPTQ算法Github安装指南开源项目推理速度量化模型
AutoGPTQ是基于GPTQ算法的LLM量化工具包,支持多种模型类型和硬件平台的推理优化,整合Marlin与Exllama内核,提升推理速度与性能,适合在资源受限环境中部署高效的语言模型。
Llama-3.1-Nemotron-lorablated-70B-i1-GGUF - Llama-3.1的矩阵量化技术优化模型性能
GithubHugging FaceHuggingfaceLlama-3.1-Nemotron-lorablated-70BQuants使用方法开源项目模型量化
该项目提供了一系列用于Llama-3.1-Nemotron模型的加权和矩阵量化文件,旨在优化模型的性能和运行效率。这些文件在缩小模型尺寸的同时保持了质量,适用于多种场景。用户可依据需求选择适合的量化级别,具体使用说明请参阅指南。项目的成功得益于各方支持和资源,推动了更多高质量量化文件的开发,助力广泛的研究和应用。
mini-magnum-12b-v1.1-iMat-GGUF - 基于mini-magnum的量化优化大语言模型
GGUFGithubHuggingfacellama.cppmini-magnum-12b大语言模型开源项目模型量化
mini-magnum-12b-v1.1模型的量化优化版本,采用iMatrix技术和fp16 GGUF进行量化处理。经验证可在llama.cpp、text-generation-web-ui等主流平台稳定运行,支持Flash Attention加速,并提供多种优化配置方案。项目包含详细的性能对比数据和部署指南,方便开发者快速上手使用。
AutoFP8 - 量化库优化大语言模型推理性能
AutoFP8FP8量化GithubvLLM开源项目模型压缩神经网络
AutoFP8是一个开源FP8量化库,用于生成vLLM兼容的压缩检查点。它提供FP8_E4M3精度的量化权重、激活和KV缓存比例,支持静态和动态激活方案。AutoFP8能将预训练模型转换为FP8格式,与vLLM无缝集成,提高大语言模型推理效率,同时保持模型精度。这个工具适用于优化和部署大规模语言模型。
model-optimization - TensorFlow 模型优化工具包, 支持量化和稀疏化
GithubKerasTensorFlow Model Optimization Toolkit剪枝开源项目机器学习模型量化
TensorFlow Model Optimization Toolkit 提供稳定的 Python API,帮助用户通过量化和稀疏化技术优化机器学习模型,包括针对 Keras 的专用 API。该工具包还提供详细的安装指南、教程和 API 文档,显著提升模型在部署和执行时的性能。该项目由 TensorFlow 团队维护,并遵循其行为准则,开发者可以通过 GitHub 提交问题和贡献代码。
Meta-Llama-3.1-8B-Instruct-AWQ-INT4 - 高性能4比特量化优化版本
AutoAWQGithubHuggingfaceMeta-Llama-3.1大语言模型开源项目推理模型量化
Meta-Llama-3.1-8B-Instruct模型的社区驱动4比特量化版本,采用AutoAWQ技术从FP16量化到INT4。该版本仅需4GB显存即可加载,大幅降低内存占用。支持Transformers、AutoAWQ、TGI和vLLM等多种推理方式,适用于不同部署场景。量化模型在保持原始性能的同时,为资源受限环境提供了高效的大语言模型方案。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号