Project Icon

bert-base-uncased-sst2-unstructured80-int8-ov

BERT模型的非结构化剪枝与量化优化技术

该项目通过非结构化幅度剪枝、量化和蒸馏,在GLUE SST2数据集上优化了BERT模型。模型在Torch和OpenVINO IR模式下准确率达到0.9128,并在Transformer层中实现了80%的稀疏性。此项目适用于OpenVINO 2024.3.0及以上版本及Optimum Intel 1.19.0及更高版本,利用NNCF完成优化,同时提供详细的参数与训练步骤,以实现高效的文本分类。

TinyBERT_General_4L_312D - 轻量级自然语言处理模型 提升理解效率
BERT模型压缩GithubHuggingfaceTinyBERTtransformer模型开源项目模型模型蒸馏自然语言理解
TinyBERT_General_4L_312D是一个经过知识蒸馏的轻量级自然语言处理模型。相比原始BERT模型,它的体积减小了7.5倍,推理速度提升了9.4倍,同时保持了竞争性能。该模型在预训练和任务特定学习阶段都应用了创新的Transformer蒸馏技术。TinyBERT为各类自然语言处理任务提供了高效的基础,尤其适用于计算资源受限的应用场景。
bge-large-en-v1.5-quant - 量化ONNX模型增强句子编码效率和性能
DeepSparseGithubHuggingfaceSparsify嵌入开源项目推理模型量化
该量化ONNX模型旨在利用DeepSparse加速bge-large-en-v1.5嵌入模型,提升句子编码效率。通过Sparsify实现的INT8量化和深度稀疏技术,在标准笔记本和AWS实例上分别实现了4.8倍和3.5倍的延迟性能改善。在多个数据集的测试中,该模型在分类和STS任务中展现出较高的编码效率。结合DeepSparse和ONNX技术栈,该模型适用于需要高效自然语言处理的应用场景。
bert-base-cased-squad2 - BERT模型实现英文文本智能问答与信息提取
BERTGithubHaystackHuggingface开源项目模型深度学习自然语言处理问答模型
BERT base cased模型通过SQuAD v2数据集训练,专注于英文文本的智能问答能力。模型具备71.15%精确匹配率,支持Haystack和Transformers框架集成部署。作为Haystack生态系统的核心组件,为开发者提供可靠的文本理解和信息提取服务。
bert-large-finetuned-squad2 - BERT大规模问答模型的SQuAD2.0优化实现
BERTGithubHuggingfaceSQuAD2.0开源项目机器学习模型自然语言处理问答系统
bert-large-finetuned-squad2基于BERT大规模模型架构,通过SQuAD2.0数据集微调优化,实现了79.7%的F1评分。该模型支持transformers库快速部署,可识别问题是否有答案并提供准确回答。模型采用384序列长度和优化学习参数,在问答任务中展现稳定性能。
bert-large-uncased-whole-word-masking - BERT大模型在Habana HPU上的性能优化配置
BERTGithubHabana GaudiHugging FaceHuggingfaceOptimum Habana开源项目模型混合精度训练
此项目为bert-large-uncased-whole-word-masking模型提供Habana Gaudi处理器(HPU)优化配置。通过GaudiConfig文件设置关键参数,如fused Adam优化器和混合精度训练,实现HPU上高效的模型操作。支持单HPU和多HPU环境,适用于多种下游任务。开发者可使用简单的命令行参数,轻松部署BERT大模型到Habana硬件上,获得显著的性能提升。
distilbert-base-cased - DistilBERT:轻量高效的BERT模型,保留核心性能
BERTDistilBERTGithubHuggingface开源项目机器学习模型自然语言处理预训练模型
DistilBERT base model (cased)是BERT base model的轻量版本,通过知识蒸馏技术实现了模型压缩。它在BookCorpus和维基百科上进行自监督预训练,在保持核心性能的同时大幅减小了模型体积,加快了推理速度。这个模型主要用于微调下游NLP任务,如序列分类、标记分类和问答等。在GLUE基准测试中,DistilBERT展现出与原始BERT相当的性能,为需要效率与性能平衡的NLP应用提供了理想选择。
UltraFastBERT - 指数级加速的BERT语言模型训练与推理方案
BERTGithubUltraFastBERT开源项目机器学习神经网络语言模型
UltraFastBERT是一个开源项目,旨在通过创新的快速前馈(FFF)层设计实现BERT语言模型的指数级加速。项目提供了完整的训练代码,以及在CPU、PyTorch和CUDA平台上的高效实现。包含训练文件夹、各平台基准测试代码,以及UltraFastBERT-1x11-long模型的配置和权重,可通过HuggingFace轻松加载使用。研究人员可以方便地复现结果,并进一步探索该突破性技术在自然语言处理领域的广泛应用潜力。
distilbert-base-uncased-go-emotions-onnx - 优化为ONNX格式的轻量级情感分析模型
GithubHuggingfaceONNX开源项目情感分析模型模型量化自然语言处理零样本分类
该模型是基于distilbert-base-uncased架构,通过零样本蒸馏技术在GoEmotions数据集上训练的情感分类工具。经ONNX格式转换和量化处理,模型性能得到显著提升。这一创新方法展示了如何将复杂的NLI零样本模型简化为高效的学生模型,实现了仅依靠未标记数据即可训练分类器的技术突破。尽管在精度上可能略逊于全监督模型,但为处理无标签数据的情感分析任务提供了实用解决方案。
ESG-BERT - ESG-BERT模型提升可持续投资领域的文本分析能力
BERT模型ESG-BERTGithubHuggingface可持续投资开源项目文本挖掘模型自然语言处理
ESG-BERT是针对可持续投资领域优化的BERT模型。在非结构化文本数据上的训练使其在下一句预测和掩码语言建模任务中表现出色。文本分类任务中,ESG-BERT的F1分数达0.90,超越通用BERT模型和传统机器学习方法。这一模型为可持续投资领域的自然语言处理任务提供了有力支持,显著提升了ESG相关文本分析效果。
ov-gpt2-fp32-no-cache - 改进GPT-2文本生成性能的开源项目,结合Optimum-Intel
GPT2GithubHuggingfaceOpenvinoOptimum-Intel开源项目文本生成模型
此项目结合Optimum-Intel而优化GPT-2的文本生成,继承于HF模型库的GPT-2,并采用OMZ的Openvino IR,实现了无缓存的高效预测。该模型允许在Optimum-Intel环境中使用OVModelForCausalLM进行文本生成,具有长文本输出和多序列结果的功能,帮助提升生成效率。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号