Project Icon

bert-base-uncased-sst2-unstructured80-int8-ov

BERT模型的非结构化剪枝与量化优化技术

该项目通过非结构化幅度剪枝、量化和蒸馏,在GLUE SST2数据集上优化了BERT模型。模型在Torch和OpenVINO IR模式下准确率达到0.9128,并在Transformer层中实现了80%的稀疏性。此项目适用于OpenVINO 2024.3.0及以上版本及Optimum Intel 1.19.0及更高版本,利用NNCF完成优化,同时提供详细的参数与训练步骤,以实现高效的文本分类。

distilbert-base-multilingual-cased - 提升效率的多语言轻量级BERT模型,支持104种语言
DistilBERTGithubHuggingface多语言模型开源项目模型维基百科自然语言处理迁移学习
distilbert-base-multilingual-cased是BERT基础多语言模型的轻量级版本,支持104种语言。该模型包含6层、768维度和12个头,总参数量为1.34亿。它在多语言维基百科数据上预训练,适用于掩码语言建模和各种下游任务的微调。与原版相比,这个模型在保持性能的同时将运行速度提高了一倍,为多语言自然语言处理任务提供了更高效的解决方案。
fast-bert - 快速训练和部署BERT与XLNet文本分类模型的深度学习库
Fast-BertGithub开源项目文本分类深度学习自然语言处理预训练模型
fast-bert是一个深度学习库,用于训练和部署基于BERT和XLNet的文本分类模型。它支持多类和多标签分类,提供数据处理、模型训练、参数调优和部署功能。该库集成了LAMB优化器和学习率查找器,旨在简化最新自然语言处理技术的应用过程。fast-bert适用于各类文本分类任务,能够帮助开发者快速构建高性能模型。
SecureBERT_Plus - 网络安全领域的增强版语言模型
GithubHuggingfaceSecureBERT+开源项目数据集机器学习模型网络安全语言模型
该模型在网络安全数据上进行训练,提升了9%的MLM性能,使用8xA100 GPU进行大规模训练,目前已上传至Huggingface平台,供用户访问和使用。
bert-base-multilingual-cased-finetuned-langtok - 基于多语言BERT的语言识别模型实现99.03%准确率
BERTGithubHuggingface多语言模型开源项目微调模型自然语言处理语言识别
这是一个基于bert-base-multilingual-cased的语言识别微调模型。模型在评估集上的准确率为99.03%,F1分数达到0.9087。模型采用Adam优化器和线性学习率调度器,经过3轮训练完成。开发框架使用Transformers 4.44.2和PyTorch 2.4.1,可应用于语言识别相关任务。
distilbert-base-cased-distilled-squad - 模型ONNX转换支持网页使用
GithubHugging FaceHuggingfaceONNXWebMLdistilbert-base-cased-distilled-squadtransformers.js开源项目模型
该项目介绍了如何将distilbert-base-cased-distilled-squad模型转换为ONNX格式,支持Transformers.js库。此转换简化了模型在网页端的部署流程,以期推动WebML的广泛应用。建议使用🤗 Optimum工具进行转换,确保结构符合项目指引。该方法是促进WebML技术发展的过渡性方案。
deberta-v3-xsmall - 轻量级高性能自然语言处理模型
DeBERTaGithubHuggingface开源项目微软机器学习模型自然语言处理预训练模型
DeBERTa-v3-xsmall是一个参数量仅为2200万的轻量级自然语言处理模型。该模型采用ELECTRA风格预训练和梯度解耦嵌入共享技术,在SQuAD 2.0和MNLI等任务上表现出色。它在保持高效性的同时,显著提升了下游任务性能,适用于资源受限的自然语言理解应用场景。
BERTopic - 高效的Transformers主题建模,支持多种模式
BERTopicGithubPythonc-TF-IDFtransformers主题建模开源项目
BERTopic是一种利用Transformers和c-TF-IDF进行主题建模的技术,能够生成易于解释的密集主题聚类,同时保留关键词描述。该项目支持多种主题建模方法,如有监督、半监督和无监督模式,具有模块化和高扩展性。丰富的可视化功能和多种表示方法进一步支持深入分析。BERTopic还兼容多种嵌入模型,并支持多语言处理,适应不同应用场景。
cramming - 探索单GPU一天内训练BERT语言模型的极限
BERTCramming Language ModelGLUEGithubPyTorchTransformer-based language model开源项目
本项目探索在单GPU上用一天时间预训练BERT语言模型的性能表现,旨在挑战当前以高算力为核心的趋势。通过调整预训练流程,展示了在严格计算限制下依然接近BERT性能,并分析不同改进对性能的影响。最新版本框架需要PyTorch 2.0,改善了数据预处理并提升了1-2% GLUE性能,提供了详细的代码运行和数据处理指南供研究和应用参考。
sparseml - 神经网络优化工具,简化代码实现高效稀疏模型
GithubSparseML开源项目推理优化模型优化神经网络稀疏化
SparseML是开源模型压缩工具包,使用剪枝、量化和蒸馏算法优化推理稀疏模型。可导出到ONNX,并与DeepSparse结合,在CPU上实现GPU级性能。适用于稀疏迁移学习和从零开始的稀疏化,兼容主流NLP和CV模型,如BERT、YOLOv5和ResNet-50,实现推理速度和模型大小的显著优化。
optimum-intel - Transformers和Diffusers库与Intel提供的不同工具和库之间的接口,用于加速 Intel 架构上的端到端管道
GithubIntel Extension for PyTorchNNCFNeural CompressorOpenVINOOptimum Intel开源项目
Optimum Intel接口将Hugging Face的Transformers和Diffusers库与Intel的工具相结合,优化PyTorch模型性能。支持Intel Neural Compressor的量化和剪枝技术,OpenVINO的高性能推理以及Intel Extension for PyTorch的操作融合和图优化。Optimum Intel提供简单直观的接口和丰富示例,便于在Intel硬件上部署高效模型。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号