Project Icon

AraBert-Arabic-Sentiment-Analysis

基于AraBERT的阿拉伯语情感分析模型实现80%分类准确率

基于AraBERT预训练模型微调的阿拉伯语情感分析模型,在评估数据集上实现了80.03%的准确率和65.43%的宏F1分数。模型采用Adam优化器和线性学习率调度器,使用16的训练批次大小,经过2轮训练得到。基于Transformers框架开发,专注于阿拉伯语文本的情感分类任务。

NADI2024-baseline - 多标签阿拉伯方言识别模型,提高文本分类的准确性
GithubHuggingfaceMarBERTv2NADI-2024-baseline多标签分类开源项目机器翻译模型阿拉伯方言识别
该项目提供了一个基于BERT模型的多标签阿拉伯方言识别工具,通过微调多个数据集实现国家级方言识别。模型使用MarBERTv2作为基础,能够实现多标签预测,提高文本中多个方言的识别精度,为阿拉伯语自然语言处理提供良好的基础和测试平台,涵盖18个国家的方言。
bert-turkish-text-classification - BERT土耳其语文本分类模型支持7大类别
BERTGithubHuggingfaceTurkish开源项目文本分类机器学习模型自然语言处理
BERT土耳其语文本分类模型通过微调Turkish BERT预训练模型而来,利用TTc4900数据集训练出支持7个类别的分类能力。涵盖世界、经济、文化等领域,开发者可借助Transformers库快速部署,实现土耳其语文本的高效分类。
twitter-roberta-base-sentiment - RoBERTa模型实现Twitter推文情感分析
GithubHuggingfaceTweetEvalTwitterroBERTa开源项目情感分析模型自然语言处理
这是一个基于RoBERTa-base的Twitter情感分析模型,通过5800万条推文训练和TweetEval基准微调而成。模型可将英文推文分类为负面、中性和正面三种情感。项目提供了包含文本预处理、模型加载和情感预测的使用示例。此外,还有一个基于更多最新推文训练的改进版本,可提供更精确的情感分析。该开源项目为自然语言处理研究者和开发者提供了实用的Twitter情感分析工具。
bertweet-base-sentiment-analysis - 英文推文情感分析模型 BERTweet-Sentiment
BERTweetGithubHuggingface开源项目情感分析推特数据机器学习模型模型自然语言处理
bertweet-base-sentiment-analysis是一个基于SemEval 2017语料库训练的英文情感分析模型。它利用BERTweet作为基础,能够识别文本中的积极、消极和中性情感。作为pysentimiento库的组成部分,该开源项目主要面向非商业用途和科研领域,为自然语言处理研究提供了实用的情感分析工具。
albert-base-v2-emotion - ALBERT架构情感分析模型:Twitter数据集微调与性能评估
AlbertGithubHuggingface开源项目情感分析文本分类机器学习模型自然语言处理
albert-base-v2-emotion是一个基于ALBERT架构的情感分析模型,在Twitter情感数据集上进行了微调。该模型在准确率和F1分数方面分别达到93.6%和93.65,展现了优秀的性能。模型训练采用HuggingFace Trainer,使用2e-5学习率、64批量大小和8轮训练。与同类模型相比,albert-base-v2-emotion在性能和处理速度间取得了平衡。开发者可以通过简洁的Python代码集成此模型,轻松实现文本情感分类功能。
indobert-emotion-classification - 高性能印尼语情感分类BERT模型
GithubHuggingfaceIndoBERTtransformer开源项目情感分类模型模型导入自然语言处理
indobert-emotion-classification是一个基于BERT的印尼语情感分析模型。该模型能够对印尼语文本进行情感分类,支持多种情感标签。通过Hugging Face Transformers库,indobert-emotion-classification可以轻松集成到各种自然语言处理项目中。这个模型适用于分析印尼语社交媒体内容、客户反馈等文本数据的情感倾向,为研究人员和开发者提供了有力的工具。
FinancialBERT-Sentiment-Analysis - 金融BERT模型优化金融文本情感分析精度
BERT模型GithubHuggingface开源项目情感分类模型自然语言处理金融情感分析金融短语库
FinancialBERT-Sentiment-Analysis是一个针对金融领域的BERT模型,通过大规模金融文本预训练和Financial PhraseBank数据集微调,在金融文本情感分析中表现卓越。该模型超越通用BERT和其他金融特定模型,为金融从业者和研究人员提供了高效的文本挖掘工具,无需大量计算资源即可使用。
flair-arabic-multi-ner - 阿拉伯语命名实体识别模型实现86%准确率
FlairGithubHuggingface命名实体识别开源项目机器学习模型自然语言处理阿拉伯语
这个阿拉伯语命名实体识别模型能够自动识别文本中的地点、组织机构和人名等实体信息。模型采用深度学习方法训练,识别准确率达到86%,已开源并支持Python环境使用。适合于阿拉伯语自然语言处理、信息提取等应用场景。
japanese-sentiment-analysis - 基于chABSA数据集的日语情感分析模型,具有高准确率和F1分数
GithubHuggingfacejapanese-sentiment-analysis开源项目情感分析数据集模型模型训练高精度
此模型基于chABSA数据集构建,专为日语情感分析设计,具有极高的准确率和F1得分。使用transformers和Pytorch进行训练,可通过Python API进行访问和集成。
emotion-english-distilroberta-base - DistilRoBERTa英文文本情感分析模型
DistilRoBERTaGithubHugging FaceHuggingface开源项目情感分类机器学习模型自然语言处理
该模型基于DistilRoBERTa-base微调,用于英文文本情感分析。可预测7种情绪:愤怒、厌恶、恐惧、快乐、中性、悲伤和惊讶。训练数据来自Twitter、Reddit等6个多样化数据集。提供简单的3行代码使用方法,适用于单个文本和完整数据集分析。模型在平衡数据集上的评估准确率为66%,远高于随机基准。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号