Project Icon

Time-Series-Analysis-with-Python-Cookbook

Python时间序列分析与预测实战指南

这本书全面介绍Python时间序列分析和预测技术,涵盖数据获取、预处理和高级建模。内容包括统计方法、机器学习和深度学习算法,以及使用TensorFlow、PyTorch等框架进行预测。通过实用代码示例和案例研究,读者可以学习处理复杂时间序列数据、进行异常检测,并解决实际业务问题。适合数据分析师和开发者提升时间序列分析技能。

test-ttm-v1 - 开源时间序列预测模型 高效预测基础
GithubHuggingfaceTinyTimeMixer基础模型开源项目时间序列模型预测预训练模型
Test TinyTimeMixer (TTM)是一个开源的时间序列预测基础模型。这个项目利用预训练方法,为时间序列分析提供了有力支持。TTM致力于提升时间序列预测的效率和准确性,可应用于多种时间相关的数据分析场景。作为开源项目,它遵循Apache 2.0许可证,并在Hugging Face平台上提供。TTM为研究人员和数据科学家提供了一个探索和优化时间序列预测技术的平台。
neuralforecast - 先进的神经网络时间序列预测模型库
GithubNeuralForecast开源项目时间序列机器学习深度学习预测模型
NeuralForecast 提供 30 多种先进的神经网络模型,提升时间序列预测的准确性和效率。支持外生变量和静态协变量,并具备自动超参数优化和可解释性方法。通过 sklearn 语法 `.fit` 和 `.predict` 实现快速训练和预测,包含 NBEATSx 和 NHITS 等最新实现,并与 Ray 和 Optuna 集成,适用于多种应用场景。
financial-machine-learning - 金融机器学习资源汇总与实践指南
Github开源项目强化学习深度学习算法交易量化交易金融机器学习
这个项目收集了金融机器学习(FinML)领域的精选工具和应用。主要包括Python资源,涵盖深度学习、强化学习和股票预测模型等。此外还提供交易微服务系统和量化机器学习交易等实用内容。项目为金融科技领域的机器学习应用提供了全面的学习和参考资料。
darts - Python中易于使用的时间序列预测与异常检测库
DartsGithub开源项目异常检测时间序列概率预测深度学习
Darts是一个用户友好且灵活的Python库,专注于时间序列的预测与异常检测。它提供了一系列从ARIMA到深度神经网络的多样化模型,通过统一的fit()和predict()接口简化操作,类似于scikit-learn。此外,Darts支持包括多变量和外部数据在内的复杂时间序列处理,并为大规模数据集提供高效解决方案。它还拥有全面的异常检测功能,允许进行深入的异常分析和评分。
timesfm - 谷歌研究院开发的时间序列预测基础模型
GithubTimesFM基础模型开源项目时间序列预测深度学习
TimesFM是谷歌研究院开发的时间序列预测基础模型,支持多种时间频率的单变量预测。模型可处理最长512个时间点的上下文和任意长度的预测范围,提供简单的API接口支持数组和pandas输入。通过外部回归器库,TimesFM能处理静态和动态协变量。此外,该模型支持微调功能,允许用户在自有数据上优化性能。
automating-technical-analysis - 自动化技术分析与深度学习的金融交易系统
Github加密货币交易开源项目技术分析时间序列分析股票交易金融交易
automating-technical-analysis项目旨在通过数据分析和深度学习简化金融交易决策。它结合了多种流行的技术分析指标,如MACD、慢随机指标和RSI,并利用Transformer编码器神经网络学习价格模式和交易行为。这种创新方法提供实时的买入、卖出或持有建议,有助于优化交易策略。项目通过Streamlit平台提供易于使用的界面,使技术分析变得更加简单和易懂。作为开源项目,它适用于股票和加密货币市场,为交易者提供强大的自动化分析工具。
Stock-Prediction-Models - 开源股票预测与交易模型集合
GithubStock-Prediction-Models交易代理开源项目机器学习深度学习股票预测
一个涵盖多种机器学习和深度学习模型的开源库,专用于股票预测和交易仿真。包括LSTM、GRU、CNN等模型,以及Q学习、进化策略等强化学习代理。此外,还提供特斯拉股票研究、异常值分析、蒙特卡洛仿真等数据探索功能,适用于实时预测和历史数据分析。
MachineLearningWithMe - 全面深入的机器学习算法实践教程
Github人工智能开源项目数据分析机器学习模型算法
MachineLearningWithMe是一个系统化的机器学习教程项目,内容涵盖从环境配置到高级算法的多个方面。项目详细讲解并实现了线性回归、逻辑回归、K近邻、朴素贝叶斯、决策树、支持向量机、聚类和降维等核心算法。特别强调动手实践,指导读者从零开始实现各类算法,并提供泰坦尼克号生还预测等实际案例。此外还包括模型评估、特征工程和集成学习等进阶内容,适合初学到中级水平的学习者深入探索机器学习领域。
scalecast - 功能全面的时间序列预测Python库
GithubPython库Scalecast开源项目数据可视化时间序列预测机器学习
Scalecast是一个功能全面的时间序列预测Python库。它提供统一的机器学习建模接口,支持LSTM、ARIMA等多种模型类型。该库集成了自动特征选择、超参数调优、模型堆叠等功能,并提供便捷的数据可视化工具。Scalecast致力于简化复杂的时间序列预测任务,适用于不同规模的预测项目。
statsmodels - Python统计建模和数据分析工具包
GithubPython包statsmodels开源项目数据分析时间序列分析统计模型
statsmodels是一个全面的Python统计建模库,提供多种统计方法和工具。包括线性回归、广义线性模型、时间序列分析、生存分析等功能。该项目文档完善,社区活跃,持续更新。适用于数据科学家和研究人员进行各类统计分析和建模任务,可处理从基础到高级的数据分析需求。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号