Project Icon

PaddleTS

基于飞桨的开源时序分析库 提供全面深度学习模型

PaddleTS是基于飞桨框架的时序建模库,专注深度学习模型。它提供统一数据结构和基础功能封装,内置多种先进模型和数据转换工具。支持自动调优、第三方集成、GPU加速和集成学习。涵盖预测、表征、异常检测等任务,为时序分析提供全面解决方案。

English | [简体中文](https://github.com/PaddlePaddle/PaddleTS/blob/release_v1.1/./README_en.md



PaddleTS is a user-friendly Python library for deep time series modeling based on the PaddlePaddle deep learning framework. It focuses on industry-leading deep models, aiming to provide domain experts and industry users with scalable time series modeling capabilities and a convenient user experience. The main features of PaddleTS include:

  • Designing a unified data structure to express diverse time series data, supporting single-target and multi-target variables, and multiple types of covariates
  • Encapsulating basic model functionalities such as data loading, callback settings, loss functions, training process control, and other common methods, helping developers focus on network structure itself during new model development
  • Built-in industry-leading deep learning models, including time series prediction models like NBEATS, NHiTS, LSTNet, TCN, Transformer, DeepAR, Informer, time series representation models like TS2Vec and CoST, as well as time series anomaly detection models like Autoencoder, VAE, and AnomalyTransformer
  • Built-in diverse data transformation operators, supporting data processing and transformation, including missing value imputation, anomaly handling, normalization, and time-related covariate extraction
  • Built-in classic data analysis operators, helping developers easily implement data exploration, including data statistical information and data summary functions
  • AutoTS for automatic model tuning, supporting multiple types of HPO (Hyper Parameter Optimization) algorithms, showing significant tuning effects on multiple models and datasets
  • Automatic integration of third-party machine learning models and data transformation modules, supporting time series applications from libraries such as sklearn and pyod
  • Support for running PaddlePaddle-based time series models on GPU devices
  • Time series model ensemble learning capability

📣 Recent Updates

  • 📚 "High-Precision Time Series Analysis Starriver Zero-Code Production Line Now Available", bringing together 3 major time series analysis scenario tasks, covering 11 cutting-edge time series models. High-precision multi-model fusion time series featured production line, automatically searching for the optimal model combination adaptive to different scenarios, improving time series prediction accuracy by about 20% and time series anomaly detection accuracy by 5% in real industrial application scenarios. Supports cloud-based and local service deployment and pure offline use. Live broadcast time: August 1 (Thursday) 19:00. Registration link: https://www.wjx.top/vm/YLz6DY6.aspx?udsid=146765
  • [2024-06-27] 💥 PaddleX 3.0, the low-code development tool for PaddlePaddle, has been significantly updated!
    • Rich model production lines: 68 high-quality PaddlePaddle models carefully selected, covering task scenarios such as image classification, object detection, image segmentation, OCR, text image layout analysis, and time series analysis;
    • Low-code development paradigm: Supports full-process low-code development for single models and model production lines, provides Python API, and supports user-defined model chaining;
    • Multi-hardware training and inference support: Supports model training and inference on various hardware including NVIDIA GPUs, Kunlun chips, Ascend, and Cambricon. For PaddleTS supported models, see [Model List](https://github.com/PaddlePaddle/PaddleTS/blob/release_v1.1/docs/hardware/supported_models.md
  • Added time series classification capability
  • Newly released 6 deep time series models. USAD (UnSupervised Anomaly Detection) and MTAD_GAT (Multivariate Time-series Anomaly Detection via Graph Attention Network) anomaly detection models, CNN and Inception Time time series classification models, SCINet (Sample Convolution and Interaction Network) and TFT (Temporal Fusion Transformer) time series prediction models
  • Newly released Paddle Inference support, adapted for time series prediction and time series anomaly detection
  • Added model interpretability capabilities. Including model-agnostic and model-specific interpretability
  • Added support for representation-based clustering and classification

You can also refer to the Release Notes for a more detailed list of updates.

In the future, more advanced features will be further released, including but not limited to:

  • More time series models
  • Scenario-based Pipeline, supporting end-to-end real scenario solutions

About PaddleTS

Specifically, the PaddleTS time series library includes the following sub-modules:

模块简述
paddlets.datasets时序数据模块,统一的时序数据结构和预定义的数据处理方法
paddlets.autots自动超参寻优
paddlets.transform数据转换模块,提供数据预处理和特征工程相关能力
paddlets.models.forecasting时序模型模块,基于飞桨深度学习框架PaddlePaddle的时序预测模型
paddlets.models.representation时序模型模块,基于飞桨深度学习框架PaddlePaddle的时序表征模型
paddlets.models.anomaly时序模型模块,基于飞桨深度学习框架PaddlePaddle的时序异常检测模型
paddlets.models.classify时序模型模块,基于飞桨深度学习框架PaddlePaddle的时序分类模型
paddlets.pipeline建模任务流模块,支持特征工程、模型训练、模型评估的任务流实现
paddlets.metrics效果评估模块,提供多维度模型评估能力
paddlets.analysis数据分析模块,提供高效的时序特色数据分析能力
paddlets.ensemble时序集成学习模块,基于模型集成提供时序预测能力
paddlets.xai时序模型可解释性模块
paddlets.utils工具集模块,提供回测等基础功能

安装

前置条件

  • python >= 3.7
  • paddlepaddle >= 2.3

使用pip安装paddlets的命令如下:

pip install paddlets

更多安装方式请参考:环境安装

文档

社区

欢迎通过扫描下面的微信二维码加入PaddleTS开源社区,与PaddleTS维护者及社区成员随时进行技术讨论:

代码发布与贡献

我们非常感谢每一位代码贡献者。如果您发现任何Bug,请随时通过提交issue的方式告知我们。

如果您计划贡献涉及新功能、工具类函数、或者扩展PaddleTS的核心组件相关的代码,请您在提交代码之前先提交issue,并针对此次提交的功能与我们进行讨论。

如果在没有讨论的情况下直接发起的PR请求,可能会导致此次PR请求被拒绝。原因是对于您提交的PR涉及的模块,我们也许希望该模块朝着另一个不同的方向发展。

许可证

PaddleTS 使用Apache风格的许可证,可参考 LICENSE 文件。

项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号