Project Icon

ClinicalNER

多语言临床命名实体识别模型 提取医疗文本中的药物和用药信息

ClinicalNER是一个基于XLM-R Base的多语言临床命名实体识别模型,通过英语n2c2数据集微调。该模型能从医疗文本中提取药物、剂量、频率、持续时间、用量和剂型等实体信息。在法语评估测试集MedNERF上,ClinicalNER展现了优异的零样本跨语言迁移能力,micro-F1分数达0.804。支持英、法、德、西、意等多种语言,ClinicalNER为临床文本分析提供了实用的工具。

ClinicalBERT - 医疗领域专用BERT模型助力临床文本分析
ClinicalBERTGithubHuggingface医疗人工智能开源项目模型电子病历自然语言处理预训练语言模型
ClinicalBERT是一款基于BERT架构的医疗领域自然语言处理模型。该模型利用12亿词的多中心疾病语料库进行预训练,并通过300多万患者的电子健康记录进行微调。ClinicalBERT采用掩码语言模型原理,适用于多种临床文本分析任务。研究人员可通过transformers库轻松调用此模型,为医疗AI研究提供有力工具。
Medical-NER - DeBERTa微调的医学命名实体识别模型
DeBERTaGithubHuggingfaceNER模型token-classification医学数据集医疗实体识别开源项目模型
该模型基于DeBERTa在PubMED数据集上微调,可识别41种医学实体,如诊断、症状和治疗。它利用先进的自然语言处理技术从医疗文本中准确提取关键信息,支持临床决策和医学研究。模型可通过Hugging Face推理API或transformers库轻松使用,为医疗信息处理提供了便捷工具。
Bio_ClinicalBERT - 为医疗临床文本优化的BERT模型
BERTClinicalBERTGithubHuggingface医疗数据开源项目机器学习模型自然语言处理
Bio_ClinicalBERT是一个针对医疗临床文本优化的BERT模型。该模型以BioBERT为基础,在MIMIC III数据库的医疗记录上进行了深度训练。它专门设计用于提升电子健康记录的理解和分析能力,尤其适合处理ICU患者数据。研究人员可通过transformers库轻松使用此模型,为临床自然语言处理任务提供有力支持。Bio_ClinicalBERT在医疗文本分析领域展现出卓越性能,为相关研究提供了有价值的工具。
roberta-es-clinical-trials-ner - 西班牙语临床试验文本的医学命名实体识别模型
GithubHuggingfaceUMLSroberta-es-clinical-trials-ner临床试验医学命名实体识别开源项目模型西班牙语
这是一个针对西班牙语临床试验文本的医学命名实体识别模型。它可以识别四类语义实体:解剖结构、化学物质、疾病和医疗程序。模型基于bsc-bio-ehr-es预训练模型微调而来,在评估集上展现出较高的准确率和F1值。目前该模型仍在开发中,主要用于分析临床试验相关文本,不适合直接应用于医疗决策。
MedNER-CR-JA - 日语医疗文档命名实体识别模型
GithubHuggingfaceMedTxt-CR-JA医疗文档命名实体识别开源项目日语模型模型训练
MedNER-CR-JA是一个面向日语医疗文档的命名实体识别模型,基于NTCIR-16 Real-MedNLP标准开发。模型可识别医疗文本中的疾病诊断、用药信息及时序表达,输出XML格式的标准化标注结果。通过Python实现,支持批量处理医疗文档,适用于医疗信息提取和文本分析等应用场景。
Clinical-Longformer - 基于Longformer的临床知识增强模型 提高医疗NLP任务效果
Clinical-LongformerGithubHuggingface临床自然语言处理医疗信息学开源项目模型长文本处理预训练语言模型
Clinical-Longformer是一种临床知识增强的预训练语言模型,基于Longformer架构开发。该模型利用MIMIC-III临床笔记进行进一步预训练,可处理长达4,096个token的输入。在10个基准数据集上,Clinical-Longformer在多项任务中表现优于ClinicalBERT,包括命名实体识别、问答、自然语言推理和文本分类。这一改进为长文本临床NLP任务提供了更有效的工具,有望推动医疗领域自然语言处理技术的进步。
biomedical-ner-all - 基于英语的生物医学实体识别AI模型
AIGithubHuggingfaceMaccrobatNamed Entity Recognitiontransformers库开源项目模型生物医学
该AI模型基于Maccrobat数据集训练,可以识别107种生物医学实体,适用于案例报告等文本工作。通过distilbert-base-uncased构建,拥有低碳排放(0.0279千克)和30.17分钟的训练时间。通过Huggingface API或transformers库,可便捷应用于生物医学领域;教程视频提供详细使用说明。
scibert_scivocab_uncased-finetuned-ner - 采用SciBERT微调的药物和不良反应识别模型
GithubHuggingfaceSciBERT不良反应医学命名实体识别开源项目模型药物
此模型基于SciBERT进行微调,专门用于识别药物名称和其不良反应,能够有效分类输入文本中的药物和不良反应实体,提升医学文本的信息提取效率。通过简单设置NER流水线,该模型可快速部署并用于自动化识别,主要应用于处理与药物和不良反应相关的自然语言处理任务,是处理ade_corpus_v2数据集的有效工具。
ZeroShotBioNER - 高效生物医学命名实体识别的突破性方法
BERTGithubHuggingface命名实体识别少样本学习开源项目模型生物医学文本识别零样本学习
ZeroShotBioNER是一种创新的生物医学命名实体识别模型,基于Transformer架构,支持零样本和少样本学习。该模型在25多个生物医学NER类别上训练,可识别疾病、化学物质、基因等多种实体。其突出优势在于能进行零样本推理,并仅需少量样本即可针对新类别进行微调。模型采用BioBERT架构,提供详细的使用说明和丰富的实体类别列表,为生物医学文本分析提供了强大工具。
hunflair2-ner - 基于Flair的生物医学实体识别开源模型
FlairGithubHuggingface命名实体识别序列标注开源项目文本分析模型自然语言处理
HunFlair2-NER是一个面向生物医学领域的命名实体识别模型,基于Flair框架开发。模型可识别文本中的生物医学实体,包括基因、疾病和化合物等。基于PrefixedSequenceTagger架构,集成SciSpacy分词功能,适用于生物医学文献分析、临床报告处理等场景。支持Python环境快速部署集成。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号